Properties

Label 2-864-24.5-c4-0-44
Degree $2$
Conductor $864$
Sign $1$
Analytic cond. $89.3116$
Root an. cond. $9.45048$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 39.9·5-s + 85.8·7-s − 240.·11-s + 972.·25-s + 818·29-s + 1.37e3·31-s + 3.43e3·35-s + 4.96e3·49-s + 2.37e3·53-s − 9.62e3·55-s + 6.86e3·59-s − 1.86e3·73-s − 2.06e4·77-s + 9.11e3·79-s − 9.28e3·83-s − 1.50e4·97-s − 1.91e4·101-s + 2.11e4·103-s + 6.84e3·107-s + ⋯
L(s)  = 1  + 1.59·5-s + 1.75·7-s − 1.98·11-s + 1.55·25-s + 0.972·29-s + 1.42·31-s + 2.80·35-s + 2.06·49-s + 0.846·53-s − 3.18·55-s + 1.97·59-s − 0.349·73-s − 3.48·77-s + 1.46·79-s − 1.34·83-s − 1.60·97-s − 1.87·101-s + 1.99·103-s + 0.597·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(89.3116\)
Root analytic conductor: \(9.45048\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (593, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(3.628646264\)
\(L(\frac12)\) \(\approx\) \(3.628646264\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 39.9T + 625T^{2} \)
7 \( 1 - 85.8T + 2.40e3T^{2} \)
11 \( 1 + 240.T + 1.46e4T^{2} \)
13 \( 1 - 2.85e4T^{2} \)
17 \( 1 - 8.35e4T^{2} \)
19 \( 1 - 1.30e5T^{2} \)
23 \( 1 - 2.79e5T^{2} \)
29 \( 1 - 818T + 7.07e5T^{2} \)
31 \( 1 - 1.37e3T + 9.23e5T^{2} \)
37 \( 1 - 1.87e6T^{2} \)
41 \( 1 - 2.82e6T^{2} \)
43 \( 1 - 3.41e6T^{2} \)
47 \( 1 - 4.87e6T^{2} \)
53 \( 1 - 2.37e3T + 7.89e6T^{2} \)
59 \( 1 - 6.86e3T + 1.21e7T^{2} \)
61 \( 1 - 1.38e7T^{2} \)
67 \( 1 - 2.01e7T^{2} \)
71 \( 1 - 2.54e7T^{2} \)
73 \( 1 + 1.86e3T + 2.83e7T^{2} \)
79 \( 1 - 9.11e3T + 3.89e7T^{2} \)
83 \( 1 + 9.28e3T + 4.74e7T^{2} \)
89 \( 1 - 6.27e7T^{2} \)
97 \( 1 + 1.50e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.829764864808069207274190446632, −8.536442948149204994251704669904, −8.119699425625088767432076833710, −7.06404981699042072104428668652, −5.83725436190528653921161347098, −5.22483371581731377778526614329, −4.60563858874137377981076889933, −2.67797507150908905423887936786, −2.09196090254101209320707458005, −0.977444546020724471232171683401, 0.977444546020724471232171683401, 2.09196090254101209320707458005, 2.67797507150908905423887936786, 4.60563858874137377981076889933, 5.22483371581731377778526614329, 5.83725436190528653921161347098, 7.06404981699042072104428668652, 8.119699425625088767432076833710, 8.536442948149204994251704669904, 9.829764864808069207274190446632

Graph of the $Z$-function along the critical line