Properties

Label 2-864-3.2-c4-0-56
Degree $2$
Conductor $864$
Sign $-1$
Analytic cond. $89.3116$
Root an. cond. $9.45048$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.20i·5-s − 58.8·7-s − 203. i·11-s − 40.3·13-s − 411. i·17-s + 674.·19-s − 295. i·23-s + 540.·25-s + 1.30e3i·29-s + 1.27e3·31-s + 541. i·35-s − 2.49e3·37-s − 1.60e3i·41-s − 995.·43-s + 2.49e3i·47-s + ⋯
L(s)  = 1  − 0.368i·5-s − 1.20·7-s − 1.67i·11-s − 0.238·13-s − 1.42i·17-s + 1.86·19-s − 0.559i·23-s + 0.864·25-s + 1.54i·29-s + 1.32·31-s + 0.442i·35-s − 1.82·37-s − 0.956i·41-s − 0.538·43-s + 1.12i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(89.3116\)
Root analytic conductor: \(9.45048\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :2),\ -1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.8720968361\)
\(L(\frac12)\) \(\approx\) \(0.8720968361\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 9.20iT - 625T^{2} \)
7 \( 1 + 58.8T + 2.40e3T^{2} \)
11 \( 1 + 203. iT - 1.46e4T^{2} \)
13 \( 1 + 40.3T + 2.85e4T^{2} \)
17 \( 1 + 411. iT - 8.35e4T^{2} \)
19 \( 1 - 674.T + 1.30e5T^{2} \)
23 \( 1 + 295. iT - 2.79e5T^{2} \)
29 \( 1 - 1.30e3iT - 7.07e5T^{2} \)
31 \( 1 - 1.27e3T + 9.23e5T^{2} \)
37 \( 1 + 2.49e3T + 1.87e6T^{2} \)
41 \( 1 + 1.60e3iT - 2.82e6T^{2} \)
43 \( 1 + 995.T + 3.41e6T^{2} \)
47 \( 1 - 2.49e3iT - 4.87e6T^{2} \)
53 \( 1 + 3.80e3iT - 7.89e6T^{2} \)
59 \( 1 - 1.06e3iT - 1.21e7T^{2} \)
61 \( 1 - 1.42e3T + 1.38e7T^{2} \)
67 \( 1 + 6.08e3T + 2.01e7T^{2} \)
71 \( 1 + 2.58e3iT - 2.54e7T^{2} \)
73 \( 1 + 9.00e3T + 2.83e7T^{2} \)
79 \( 1 - 5.11e3T + 3.89e7T^{2} \)
83 \( 1 + 8.67e3iT - 4.74e7T^{2} \)
89 \( 1 + 4.62e3iT - 6.27e7T^{2} \)
97 \( 1 + 8.85e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.098179657565391154201618141908, −8.574689232626633749211653483999, −7.32361013738255664112183981520, −6.63648656865314769076874561518, −5.59283748781868830110336130645, −4.88679147915565669748127802128, −3.19889301190930823004951766092, −3.08647430423325225664113314122, −1.05966997065587236746995123329, −0.22283674095448282878907885189, 1.40728894992378306692044450682, 2.67202344495304606787085668127, 3.58464835684728993278120976436, 4.64829229518326456447340084333, 5.75540839114120111905686095822, 6.72161557388010595678353832507, 7.27280905986382897644745268012, 8.268375240541944339661515761286, 9.528858311166675234059955886134, 9.883682122688654770695485955325

Graph of the $Z$-function along the critical line