Properties

Label 2-864-3.2-c4-0-32
Degree $2$
Conductor $864$
Sign $1$
Analytic cond. $89.3116$
Root an. cond. $9.45048$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20.7i·5-s + 63.5·7-s − 42.4i·11-s − 235.·13-s + 207. i·17-s + 227.·19-s + 657. i·23-s + 194.·25-s + 615. i·29-s + 1.61e3·31-s − 1.31e3i·35-s + 1.48e3·37-s + 2.76e3i·41-s − 827.·43-s − 926. i·47-s + ⋯
L(s)  = 1  − 0.830i·5-s + 1.29·7-s − 0.350i·11-s − 1.39·13-s + 0.718i·17-s + 0.630·19-s + 1.24i·23-s + 0.310·25-s + 0.731i·29-s + 1.67·31-s − 1.07i·35-s + 1.08·37-s + 1.64i·41-s − 0.447·43-s − 0.419i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(864\)    =    \(2^{5} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(89.3116\)
Root analytic conductor: \(9.45048\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{864} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 864,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.469815982\)
\(L(\frac12)\) \(\approx\) \(2.469815982\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 20.7iT - 625T^{2} \)
7 \( 1 - 63.5T + 2.40e3T^{2} \)
11 \( 1 + 42.4iT - 1.46e4T^{2} \)
13 \( 1 + 235.T + 2.85e4T^{2} \)
17 \( 1 - 207. iT - 8.35e4T^{2} \)
19 \( 1 - 227.T + 1.30e5T^{2} \)
23 \( 1 - 657. iT - 2.79e5T^{2} \)
29 \( 1 - 615. iT - 7.07e5T^{2} \)
31 \( 1 - 1.61e3T + 9.23e5T^{2} \)
37 \( 1 - 1.48e3T + 1.87e6T^{2} \)
41 \( 1 - 2.76e3iT - 2.82e6T^{2} \)
43 \( 1 + 827.T + 3.41e6T^{2} \)
47 \( 1 + 926. iT - 4.87e6T^{2} \)
53 \( 1 + 3.92e3iT - 7.89e6T^{2} \)
59 \( 1 - 2.94e3iT - 1.21e7T^{2} \)
61 \( 1 + 946.T + 1.38e7T^{2} \)
67 \( 1 + 2.68e3T + 2.01e7T^{2} \)
71 \( 1 - 1.02e3iT - 2.54e7T^{2} \)
73 \( 1 + 1.29e3T + 2.83e7T^{2} \)
79 \( 1 + 4.52e3T + 3.89e7T^{2} \)
83 \( 1 + 2.54e3iT - 4.74e7T^{2} \)
89 \( 1 + 1.07e4iT - 6.27e7T^{2} \)
97 \( 1 - 1.38e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.590896831300344682430871755705, −8.610544472896935499516941449556, −8.004478941029368883656153736844, −7.24792467514301327301574742700, −5.93843927056175882445301755542, −4.94064747200785195934328117524, −4.58351243649719569568306666478, −3.10055451542932009640424466756, −1.77581150381249653611477313999, −0.894587825541325335710071421777, 0.70468593712833331661407832623, 2.19048576528218868140868749592, 2.86942540971683387632821173384, 4.47564123605508126933661703968, 4.94199513202966229267665648810, 6.19956414396325442565418616636, 7.23539414646172243067330873725, 7.69444915236499241780540448552, 8.688477996005813099431422208269, 9.766290890613117984269590542449

Graph of the $Z$-function along the critical line