Properties

Label 2-862-1.1-c5-0-149
Degree $2$
Conductor $862$
Sign $-1$
Analytic cond. $138.250$
Root an. cond. $11.7580$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 9.42·3-s + 16·4-s − 32.1·5-s + 37.7·6-s − 9.66·7-s + 64·8-s − 154.·9-s − 128.·10-s − 114.·11-s + 150.·12-s + 37.2·13-s − 38.6·14-s − 303.·15-s + 256·16-s + 946.·17-s − 616.·18-s + 571.·19-s − 515.·20-s − 91.0·21-s − 456.·22-s + 3.65e3·23-s + 603.·24-s − 2.08e3·25-s + 149.·26-s − 3.74e3·27-s − 154.·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.604·3-s + 0.5·4-s − 0.575·5-s + 0.427·6-s − 0.0745·7-s + 0.353·8-s − 0.634·9-s − 0.407·10-s − 0.284·11-s + 0.302·12-s + 0.0611·13-s − 0.0527·14-s − 0.348·15-s + 0.250·16-s + 0.794·17-s − 0.448·18-s + 0.363·19-s − 0.287·20-s − 0.0450·21-s − 0.200·22-s + 1.43·23-s + 0.213·24-s − 0.668·25-s + 0.0432·26-s − 0.988·27-s − 0.0372·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(862\)    =    \(2 \cdot 431\)
Sign: $-1$
Analytic conductor: \(138.250\)
Root analytic conductor: \(11.7580\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 862,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
431 \( 1 - 1.85e5T \)
good3 \( 1 - 9.42T + 243T^{2} \)
5 \( 1 + 32.1T + 3.12e3T^{2} \)
7 \( 1 + 9.66T + 1.68e4T^{2} \)
11 \( 1 + 114.T + 1.61e5T^{2} \)
13 \( 1 - 37.2T + 3.71e5T^{2} \)
17 \( 1 - 946.T + 1.41e6T^{2} \)
19 \( 1 - 571.T + 2.47e6T^{2} \)
23 \( 1 - 3.65e3T + 6.43e6T^{2} \)
29 \( 1 + 524.T + 2.05e7T^{2} \)
31 \( 1 + 3.16e3T + 2.86e7T^{2} \)
37 \( 1 - 8.75e3T + 6.93e7T^{2} \)
41 \( 1 - 3.31e3T + 1.15e8T^{2} \)
43 \( 1 - 6.59e3T + 1.47e8T^{2} \)
47 \( 1 + 2.66e4T + 2.29e8T^{2} \)
53 \( 1 + 1.17e4T + 4.18e8T^{2} \)
59 \( 1 + 3.31e4T + 7.14e8T^{2} \)
61 \( 1 + 3.33e4T + 8.44e8T^{2} \)
67 \( 1 + 4.48e4T + 1.35e9T^{2} \)
71 \( 1 + 7.49e3T + 1.80e9T^{2} \)
73 \( 1 + 8.93e4T + 2.07e9T^{2} \)
79 \( 1 - 9.27e4T + 3.07e9T^{2} \)
83 \( 1 + 1.15e5T + 3.93e9T^{2} \)
89 \( 1 - 4.37e4T + 5.58e9T^{2} \)
97 \( 1 + 8.35e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.965974516843017867953998968326, −7.906429892168354223570944313067, −7.50696904023124810799708552128, −6.27037586668296511800534912142, −5.41309587768272598331096418969, −4.44506960004953186829885790375, −3.32503827788290774643248752905, −2.87183411770027915770535271032, −1.48102391154436066599162504340, 0, 1.48102391154436066599162504340, 2.87183411770027915770535271032, 3.32503827788290774643248752905, 4.44506960004953186829885790375, 5.41309587768272598331096418969, 6.27037586668296511800534912142, 7.50696904023124810799708552128, 7.906429892168354223570944313067, 8.965974516843017867953998968326

Graph of the $Z$-function along the critical line