Properties

Label 2-862-1.1-c5-0-133
Degree $2$
Conductor $862$
Sign $-1$
Analytic cond. $138.250$
Root an. cond. $11.7580$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 8.19·3-s + 16·4-s − 66.8·5-s + 32.7·6-s − 215.·7-s + 64·8-s − 175.·9-s − 267.·10-s + 509.·11-s + 131.·12-s + 868.·13-s − 862.·14-s − 547.·15-s + 256·16-s + 2.23e3·17-s − 703.·18-s + 1.26e3·19-s − 1.06e3·20-s − 1.76e3·21-s + 2.03e3·22-s − 2.23e3·23-s + 524.·24-s + 1.33e3·25-s + 3.47e3·26-s − 3.43e3·27-s − 3.45e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.525·3-s + 0.5·4-s − 1.19·5-s + 0.371·6-s − 1.66·7-s + 0.353·8-s − 0.723·9-s − 0.845·10-s + 1.26·11-s + 0.262·12-s + 1.42·13-s − 1.17·14-s − 0.628·15-s + 0.250·16-s + 1.87·17-s − 0.511·18-s + 0.801·19-s − 0.597·20-s − 0.874·21-s + 0.897·22-s − 0.880·23-s + 0.185·24-s + 0.428·25-s + 1.00·26-s − 0.905·27-s − 0.831·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(862\)    =    \(2 \cdot 431\)
Sign: $-1$
Analytic conductor: \(138.250\)
Root analytic conductor: \(11.7580\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 862,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
431 \( 1 - 1.85e5T \)
good3 \( 1 - 8.19T + 243T^{2} \)
5 \( 1 + 66.8T + 3.12e3T^{2} \)
7 \( 1 + 215.T + 1.68e4T^{2} \)
11 \( 1 - 509.T + 1.61e5T^{2} \)
13 \( 1 - 868.T + 3.71e5T^{2} \)
17 \( 1 - 2.23e3T + 1.41e6T^{2} \)
19 \( 1 - 1.26e3T + 2.47e6T^{2} \)
23 \( 1 + 2.23e3T + 6.43e6T^{2} \)
29 \( 1 + 6.70e3T + 2.05e7T^{2} \)
31 \( 1 + 5.25e3T + 2.86e7T^{2} \)
37 \( 1 - 1.33e4T + 6.93e7T^{2} \)
41 \( 1 + 5.38e3T + 1.15e8T^{2} \)
43 \( 1 + 1.18e3T + 1.47e8T^{2} \)
47 \( 1 - 1.37e4T + 2.29e8T^{2} \)
53 \( 1 + 2.04e4T + 4.18e8T^{2} \)
59 \( 1 + 2.75e4T + 7.14e8T^{2} \)
61 \( 1 + 2.23e4T + 8.44e8T^{2} \)
67 \( 1 + 3.73e4T + 1.35e9T^{2} \)
71 \( 1 + 5.80e4T + 1.80e9T^{2} \)
73 \( 1 - 6.42e4T + 2.07e9T^{2} \)
79 \( 1 + 8.65e4T + 3.07e9T^{2} \)
83 \( 1 - 2.23e4T + 3.93e9T^{2} \)
89 \( 1 - 3.64e4T + 5.58e9T^{2} \)
97 \( 1 - 6.63e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.100274576969199469010398777541, −7.962218303105610524103644459709, −7.36020780641800976926715055080, −6.14622435984285386700638473916, −5.77914460798531190987128142467, −3.93080827593253631941426681961, −3.59135011754795182825528955734, −3.05188573207374799444967371207, −1.29621288745759408052932127115, 0, 1.29621288745759408052932127115, 3.05188573207374799444967371207, 3.59135011754795182825528955734, 3.93080827593253631941426681961, 5.77914460798531190987128142467, 6.14622435984285386700638473916, 7.36020780641800976926715055080, 7.962218303105610524103644459709, 9.100274576969199469010398777541

Graph of the $Z$-function along the critical line