Properties

Label 8-861e4-1.1-c1e4-0-0
Degree $8$
Conductor $549556825041$
Sign $1$
Analytic cond. $2234.19$
Root an. cond. $2.62204$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s − 4·3-s + 7·4-s + 5-s − 12·6-s − 7-s + 15·8-s + 10·9-s + 3·10-s + 11-s − 28·12-s − 6·13-s − 3·14-s − 4·15-s + 30·16-s + 2·17-s + 30·18-s − 12·19-s + 7·20-s + 4·21-s + 3·22-s − 17·23-s − 60·24-s + 5·25-s − 18·26-s − 20·27-s − 7·28-s + ⋯
L(s)  = 1  + 2.12·2-s − 2.30·3-s + 7/2·4-s + 0.447·5-s − 4.89·6-s − 0.377·7-s + 5.30·8-s + 10/3·9-s + 0.948·10-s + 0.301·11-s − 8.08·12-s − 1.66·13-s − 0.801·14-s − 1.03·15-s + 15/2·16-s + 0.485·17-s + 7.07·18-s − 2.75·19-s + 1.56·20-s + 0.872·21-s + 0.639·22-s − 3.54·23-s − 12.2·24-s + 25-s − 3.53·26-s − 3.84·27-s − 1.32·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 41^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 41^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 41^{4}\)
Sign: $1$
Analytic conductor: \(2234.19\)
Root analytic conductor: \(2.62204\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 41^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.389750587\)
\(L(\frac12)\) \(\approx\) \(5.389750587\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{4} \)
7$C_4$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
41$C_4$ \( 1 - 11 T + 111 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
good2$C_2^2:C_4$ \( 1 - 3 T + p T^{2} + T^{4} + p^{3} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
5$C_4\times C_2$ \( 1 - T - 4 T^{2} + 9 T^{3} + 11 T^{4} + 9 p T^{5} - 4 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
11$C_4\times C_2$ \( 1 - T - 10 T^{2} + 21 T^{3} + 89 T^{4} + 21 p T^{5} - 10 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
13$C_4\times C_2$ \( 1 + 6 T + 23 T^{2} + 60 T^{3} + 61 T^{4} + 60 p T^{5} + 23 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2^2:C_4$ \( 1 - 2 T + 7 T^{2} - 70 T^{3} + 441 T^{4} - 70 p T^{5} + 7 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^2:C_4$ \( 1 + 12 T + 35 T^{2} - 198 T^{3} - 1781 T^{4} - 198 p T^{5} + 35 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^2:C_4$ \( 1 + 17 T + 7 p T^{2} + 1121 T^{3} + 6044 T^{4} + 1121 p T^{5} + 7 p^{3} T^{6} + 17 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2^2:C_4$ \( 1 - 12 T + 65 T^{2} - 432 T^{3} + 3049 T^{4} - 432 p T^{5} + 65 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2^2:C_4$ \( 1 - 20 T + 159 T^{2} - 670 T^{3} + 2591 T^{4} - 670 p T^{5} + 159 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2^2:C_4$ \( 1 - 3 T + 42 T^{2} - 175 T^{3} + 891 T^{4} - 175 p T^{5} + 42 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
43$C_4\times C_2$ \( 1 - 8 T + 21 T^{2} + 176 T^{3} - 2311 T^{4} + 176 p T^{5} + 21 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2^2:C_4$ \( 1 - 7 T - 28 T^{2} + 185 T^{3} + 941 T^{4} + 185 p T^{5} - 28 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2^2:C_4$ \( 1 + 19 T + 98 T^{2} - 105 T^{3} - 2869 T^{4} - 105 p T^{5} + 98 p^{2} T^{6} + 19 p^{3} T^{7} + p^{4} T^{8} \)
59$C_4\times C_2$ \( 1 + 3 T - 50 T^{2} - 327 T^{3} + 1969 T^{4} - 327 p T^{5} - 50 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2:C_4$ \( 1 + 11 T + 35 T^{2} + 589 T^{3} + 8344 T^{4} + 589 p T^{5} + 35 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^2:C_4$ \( 1 + 8 T - 33 T^{2} + 10 T^{3} + 4811 T^{4} + 10 p T^{5} - 33 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^2:C_4$ \( 1 + 13 T + 68 T^{2} + 981 T^{3} + 13325 T^{4} + 981 p T^{5} + 68 p^{2} T^{6} + 13 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + T + 135 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 15 T + p T^{2} )^{4} \)
83$D_{4}$ \( ( 1 + 17 T + 227 T^{2} + 17 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2:C_4$ \( 1 + 6 T - 13 T^{2} + 768 T^{3} + 12565 T^{4} + 768 p T^{5} - 13 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2^2:C_4$ \( 1 - 12 T + 117 T^{2} - 1780 T^{3} + 26181 T^{4} - 1780 p T^{5} + 117 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22304327292002524603650375959, −6.71178733974087352362545171060, −6.56804044980286681773890516561, −6.37122635778031694597931044409, −6.25115268006496615724028735084, −6.06041630105963863905523489802, −6.05671063881638801380097856365, −5.89951017545658176256163659458, −5.54657954039778986196702707858, −4.88797239332999249229977114613, −4.81290853348086416796971788275, −4.77975197068403903747259275202, −4.71871293780915738423143863250, −4.21452907280946288649457105208, −4.15412835503068295023690357789, −4.02934327877206077403305503624, −3.54693070473579623272901077263, −3.01498013817282870733704656482, −2.67126195939673542077994256704, −2.50378683887455552660161232836, −2.33949420123929544863640609398, −1.92318652827187720568610952652, −1.30229468720426495030670909076, −1.21139248397315474640408340556, −0.44302273141209692034612821299, 0.44302273141209692034612821299, 1.21139248397315474640408340556, 1.30229468720426495030670909076, 1.92318652827187720568610952652, 2.33949420123929544863640609398, 2.50378683887455552660161232836, 2.67126195939673542077994256704, 3.01498013817282870733704656482, 3.54693070473579623272901077263, 4.02934327877206077403305503624, 4.15412835503068295023690357789, 4.21452907280946288649457105208, 4.71871293780915738423143863250, 4.77975197068403903747259275202, 4.81290853348086416796971788275, 4.88797239332999249229977114613, 5.54657954039778986196702707858, 5.89951017545658176256163659458, 6.05671063881638801380097856365, 6.06041630105963863905523489802, 6.25115268006496615724028735084, 6.37122635778031694597931044409, 6.56804044980286681773890516561, 6.71178733974087352362545171060, 7.22304327292002524603650375959

Graph of the $Z$-function along the critical line