L(s) = 1 | − 2.39i·2-s − 3.72·4-s + (2.23 − 0.0520i)5-s − 4.15i·7-s + 4.13i·8-s + (−0.124 − 5.35i)10-s + 5.71·11-s + 3.79i·13-s − 9.93·14-s + 2.44·16-s − 2.66i·17-s − 19-s + (−8.33 + 0.194i)20-s − 13.6i·22-s − 8.13i·23-s + ⋯ |
L(s) = 1 | − 1.69i·2-s − 1.86·4-s + (0.999 − 0.0232i)5-s − 1.56i·7-s + 1.46i·8-s + (−0.0394 − 1.69i)10-s + 1.72·11-s + 1.05i·13-s − 2.65·14-s + 0.610·16-s − 0.646i·17-s − 0.229·19-s + (−1.86 + 0.0434i)20-s − 2.91i·22-s − 1.69i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0232i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0205641 - 1.76613i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0205641 - 1.76613i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 + 0.0520i)T \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 + 2.39iT - 2T^{2} \) |
| 7 | \( 1 + 4.15iT - 7T^{2} \) |
| 11 | \( 1 - 5.71T + 11T^{2} \) |
| 13 | \( 1 - 3.79iT - 13T^{2} \) |
| 17 | \( 1 + 2.66iT - 17T^{2} \) |
| 23 | \( 1 + 8.13iT - 23T^{2} \) |
| 29 | \( 1 - 4.73T + 29T^{2} \) |
| 31 | \( 1 + 2.31T + 31T^{2} \) |
| 37 | \( 1 - 4.68iT - 37T^{2} \) |
| 41 | \( 1 + 10.1T + 41T^{2} \) |
| 43 | \( 1 + 1.76iT - 43T^{2} \) |
| 47 | \( 1 - 7.14iT - 47T^{2} \) |
| 53 | \( 1 - 3.04iT - 53T^{2} \) |
| 59 | \( 1 + 0.582T + 59T^{2} \) |
| 61 | \( 1 + 9.54T + 61T^{2} \) |
| 67 | \( 1 - 1.20iT - 67T^{2} \) |
| 71 | \( 1 + 1.20T + 71T^{2} \) |
| 73 | \( 1 - 11.5iT - 73T^{2} \) |
| 79 | \( 1 + 5.06T + 79T^{2} \) |
| 83 | \( 1 + 1.83iT - 83T^{2} \) |
| 89 | \( 1 - 3.36T + 89T^{2} \) |
| 97 | \( 1 + 0.313iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00770718964752680305225594847, −9.266617978386094479090985705798, −8.629180733103440127829496152524, −6.92442373775096004483047330097, −6.46856839336641904046889622551, −4.63524708884199231131324471948, −4.23110941513498307700359792757, −3.10100365894853228659627898084, −1.79358863411132419659552274856, −0.965165061762396227855908382266,
1.79812051496429152689743486740, 3.42810998214085374641217001267, 4.92700633649532649304243261406, 5.71383856672579658999553822691, 6.12959932836348714288431793011, 6.92842697407291718277877524289, 8.083112437714742856944583339317, 8.916004359680621011767017351660, 9.223513366474003555966427406833, 10.17663077077124254321707202592