Properties

Label 2-855-5.4-c1-0-12
Degree $2$
Conductor $855$
Sign $-0.770 - 0.637i$
Analytic cond. $6.82720$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.57i·2-s − 0.472·4-s + (1.72 + 1.42i)5-s − 1.87i·7-s + 2.40i·8-s + (−2.24 + 2.70i)10-s − 1.92·11-s + 0.248i·13-s + 2.95·14-s − 4.72·16-s + 7.06i·17-s − 19-s + (−0.813 − 0.672i)20-s − 3.02i·22-s + 1.20i·23-s + ⋯
L(s)  = 1  + 1.11i·2-s − 0.236·4-s + (0.770 + 0.637i)5-s − 0.710i·7-s + 0.849i·8-s + (−0.708 + 0.856i)10-s − 0.579·11-s + 0.0688i·13-s + 0.789·14-s − 1.18·16-s + 1.71i·17-s − 0.229·19-s + (−0.181 − 0.150i)20-s − 0.643i·22-s + 0.250i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.770 - 0.637i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $-0.770 - 0.637i$
Analytic conductor: \(6.82720\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{855} (514, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :1/2),\ -0.770 - 0.637i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.602468 + 1.67420i\)
\(L(\frac12)\) \(\approx\) \(0.602468 + 1.67420i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.72 - 1.42i)T \)
19 \( 1 + T \)
good2 \( 1 - 1.57iT - 2T^{2} \)
7 \( 1 + 1.87iT - 7T^{2} \)
11 \( 1 + 1.92T + 11T^{2} \)
13 \( 1 - 0.248iT - 13T^{2} \)
17 \( 1 - 7.06iT - 17T^{2} \)
23 \( 1 - 1.20iT - 23T^{2} \)
29 \( 1 - 2.58T + 29T^{2} \)
31 \( 1 - 8.69T + 31T^{2} \)
37 \( 1 - 7.86iT - 37T^{2} \)
41 \( 1 + 1.52T + 41T^{2} \)
43 \( 1 - 4.15iT - 43T^{2} \)
47 \( 1 + 5.96iT - 47T^{2} \)
53 \( 1 + 7.11iT - 53T^{2} \)
59 \( 1 + 11.8T + 59T^{2} \)
61 \( 1 - 5.87T + 61T^{2} \)
67 \( 1 + 9.53iT - 67T^{2} \)
71 \( 1 - 9.53T + 71T^{2} \)
73 \( 1 + 6.69iT - 73T^{2} \)
79 \( 1 - 0.348T + 79T^{2} \)
83 \( 1 + 2.41iT - 83T^{2} \)
89 \( 1 + 17.3T + 89T^{2} \)
97 \( 1 - 7.70iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46801726897049601842731762927, −9.738926647831828317254423978228, −8.416978483408863794607620747978, −7.935417350907262444035513011119, −6.82900970278000736526443283652, −6.39693134753561606259803162793, −5.54650414147814967452721080149, −4.48963311626447906101580310248, −3.08111230277674266958760869416, −1.81487289617263923547742101067, 0.867078431670072747726241439742, 2.31429359148562095952995007176, 2.82925767864963353732391708099, 4.38871251955419402246286130893, 5.27304075499559096967427662980, 6.23086595600442730395522234577, 7.28091999953992204113400374714, 8.507112867833135809942986554315, 9.285835756818065963731677039451, 9.898549443933558803586145152418

Graph of the $Z$-function along the critical line