L(s) = 1 | − 2.73i·2-s − 5.48·4-s + (−1.15 − 1.91i)5-s + 2.95i·7-s + 9.52i·8-s + (−5.23 + 3.15i)10-s + 4.70·11-s + 3.69i·13-s + 8.08·14-s + 15.0·16-s + 4.86i·17-s − 19-s + (6.32 + 10.5i)20-s − 12.8i·22-s − 2.38i·23-s + ⋯ |
L(s) = 1 | − 1.93i·2-s − 2.74·4-s + (−0.515 − 0.856i)5-s + 1.11i·7-s + 3.36i·8-s + (−1.65 + 0.997i)10-s + 1.41·11-s + 1.02i·13-s + 2.15·14-s + 3.77·16-s + 1.18i·17-s − 0.229·19-s + (1.41 + 2.34i)20-s − 2.74i·22-s − 0.497i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.515 + 0.856i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.515 + 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.846609 - 0.478450i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.846609 - 0.478450i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.15 + 1.91i)T \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 + 2.73iT - 2T^{2} \) |
| 7 | \( 1 - 2.95iT - 7T^{2} \) |
| 11 | \( 1 - 4.70T + 11T^{2} \) |
| 13 | \( 1 - 3.69iT - 13T^{2} \) |
| 17 | \( 1 - 4.86iT - 17T^{2} \) |
| 23 | \( 1 + 2.38iT - 23T^{2} \) |
| 29 | \( 1 + 6.56T + 29T^{2} \) |
| 31 | \( 1 - 1.78T + 31T^{2} \) |
| 37 | \( 1 - 3.73iT - 37T^{2} \) |
| 41 | \( 1 + 2.39T + 41T^{2} \) |
| 43 | \( 1 - 8.82iT - 43T^{2} \) |
| 47 | \( 1 + 1.48iT - 47T^{2} \) |
| 53 | \( 1 + 1.31iT - 53T^{2} \) |
| 59 | \( 1 + 2.04T + 59T^{2} \) |
| 61 | \( 1 - 13.2T + 61T^{2} \) |
| 67 | \( 1 - 5.51iT - 67T^{2} \) |
| 71 | \( 1 - 5.51T + 71T^{2} \) |
| 73 | \( 1 + 5.57iT - 73T^{2} \) |
| 79 | \( 1 - 5.18T + 79T^{2} \) |
| 83 | \( 1 - 6.83iT - 83T^{2} \) |
| 89 | \( 1 - 7.13T + 89T^{2} \) |
| 97 | \( 1 - 9.88iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02288730240928257279813231282, −9.201471930115954470764530222547, −8.845091049326697426026271080318, −8.131466209666212780854155288991, −6.31721385432088137484764612091, −5.15892204082521112769885669389, −4.21815867905608372486449279415, −3.64128089501495464380021223599, −2.17307084637925482729786469552, −1.31641431888425883124885170147,
0.55504117899014873961843373517, 3.53982434130416284167420062460, 4.09712928765119557258592529118, 5.25673740718283443044442139555, 6.25773812536219592842468649578, 7.12067641240716630118594558015, 7.35210402268103194989851818202, 8.270891861692731962650344217085, 9.265878964187661037031627819632, 9.990901754523216512708953908535