L(s) = 1 | + 2.62i·2-s − 4.86·4-s + (2.20 + 0.365i)5-s − 3.50i·7-s − 7.51i·8-s + (−0.958 + 5.78i)10-s − 3.68i·11-s − 2.74·13-s + 9.19·14-s + 9.94·16-s + 3.56·17-s + (3.34 + 2.79i)19-s + (−10.7 − 1.78i)20-s + 9.66·22-s − 1.83·23-s + ⋯ |
L(s) = 1 | + 1.85i·2-s − 2.43·4-s + (0.986 + 0.163i)5-s − 1.32i·7-s − 2.65i·8-s + (−0.303 + 1.82i)10-s − 1.11i·11-s − 0.761·13-s + 2.45·14-s + 2.48·16-s + 0.864·17-s + (0.768 + 0.640i)19-s + (−2.40 − 0.398i)20-s + 2.06·22-s − 0.382·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.241 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.241 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20874 + 0.945221i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20874 + 0.945221i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.20 - 0.365i)T \) |
| 19 | \( 1 + (-3.34 - 2.79i)T \) |
good | 2 | \( 1 - 2.62iT - 2T^{2} \) |
| 7 | \( 1 + 3.50iT - 7T^{2} \) |
| 11 | \( 1 + 3.68iT - 11T^{2} \) |
| 13 | \( 1 + 2.74T + 13T^{2} \) |
| 17 | \( 1 - 3.56T + 17T^{2} \) |
| 23 | \( 1 + 1.83T + 23T^{2} \) |
| 29 | \( 1 - 10.0T + 29T^{2} \) |
| 31 | \( 1 + 2.21iT - 31T^{2} \) |
| 37 | \( 1 - 5.95T + 37T^{2} \) |
| 41 | \( 1 - 5.24T + 41T^{2} \) |
| 43 | \( 1 + 2.00iT - 43T^{2} \) |
| 47 | \( 1 + 8.52T + 47T^{2} \) |
| 53 | \( 1 + 10.1iT - 53T^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + 0.203T + 61T^{2} \) |
| 67 | \( 1 + 10.1T + 67T^{2} \) |
| 71 | \( 1 - 9.26T + 71T^{2} \) |
| 73 | \( 1 + 3.53iT - 73T^{2} \) |
| 79 | \( 1 - 13.0iT - 79T^{2} \) |
| 83 | \( 1 - 11.3T + 83T^{2} \) |
| 89 | \( 1 - 10.2T + 89T^{2} \) |
| 97 | \( 1 + 18.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.917651879420715668034979765427, −9.515256753160891526021443646892, −8.258070428488455253689795293299, −7.74126275066825643350954561746, −6.83171014924259432813506080270, −6.14597152358257520538502695603, −5.38132598509370471714335476614, −4.46230251272627149306521090011, −3.26021034629164188686815153104, −0.885428573623812458777254141788,
1.34532724975673793982671563369, 2.43619978244141838590284695015, 2.93084071471178247919963936352, 4.63853349684701527940484091258, 5.11320712726229272409205631705, 6.21670671453493016379658009855, 7.78493120486535109340990492460, 8.917358611245662777205715401935, 9.496043453040633766531192967857, 9.937001891924220230938816427979