Properties

Label 8-855e4-1.1-c0e4-0-0
Degree $8$
Conductor $534397550625$
Sign $1$
Analytic cond. $0.0331507$
Root an. cond. $0.653223$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 2·16-s + 4·43-s + 8·49-s + 8·61-s − 4·73-s + 8·112-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  − 4·7-s − 2·16-s + 4·43-s + 8·49-s + 8·61-s − 4·73-s + 8·112-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(0.0331507\)
Root analytic conductor: \(0.653223\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{4} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3471844890\)
\(L(\frac12)\) \(\approx\) \(0.3471844890\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 + T^{4} )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
11$C_2^2$ \( ( 1 + T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_1$ \( ( 1 - T )^{8} \)
67$C_2^2$ \( ( 1 + T^{4} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2^2$ \( ( 1 + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.31780188478307991858998662991, −7.19891578715409309517316877698, −7.02905413148285075207399633218, −6.83883075009207009662782640316, −6.69683490653387019619337918651, −6.31225992798739807931633303070, −6.29691858149005023084512091144, −5.95762773566764123329529615527, −5.77638106324670461903577395945, −5.61311521998488495491058004213, −5.19409813399229753798455324267, −5.14362758230769134078721484760, −4.51340070619943166188766706478, −4.29713547017525582512552863543, −4.00382118451888696270977422416, −3.98682867765082996015417922914, −3.64900819978712373072822762962, −3.37133175909054293983531186810, −2.98062933772815863863763820858, −2.75184923333917728736360534650, −2.56780158157675065733925476292, −2.24614946098989810571290502622, −2.07441109748410964014599822809, −1.04879198636909619473240441296, −0.59014907399946156899795443648, 0.59014907399946156899795443648, 1.04879198636909619473240441296, 2.07441109748410964014599822809, 2.24614946098989810571290502622, 2.56780158157675065733925476292, 2.75184923333917728736360534650, 2.98062933772815863863763820858, 3.37133175909054293983531186810, 3.64900819978712373072822762962, 3.98682867765082996015417922914, 4.00382118451888696270977422416, 4.29713547017525582512552863543, 4.51340070619943166188766706478, 5.14362758230769134078721484760, 5.19409813399229753798455324267, 5.61311521998488495491058004213, 5.77638106324670461903577395945, 5.95762773566764123329529615527, 6.29691858149005023084512091144, 6.31225992798739807931633303070, 6.69683490653387019619337918651, 6.83883075009207009662782640316, 7.02905413148285075207399633218, 7.19891578715409309517316877698, 7.31780188478307991858998662991

Graph of the $Z$-function along the critical line