Properties

Label 2-847-1.1-c5-0-89
Degree $2$
Conductor $847$
Sign $-1$
Analytic cond. $135.845$
Root an. cond. $11.6552$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.04·2-s − 8.44·3-s − 15.6·4-s − 80.4·5-s + 34.1·6-s + 49·7-s + 192.·8-s − 171.·9-s + 325.·10-s + 132.·12-s − 1.04e3·13-s − 198.·14-s + 679.·15-s − 277.·16-s + 1.37e3·17-s + 693.·18-s − 3.07e3·19-s + 1.25e3·20-s − 413.·21-s − 2.80e3·23-s − 1.62e3·24-s + 3.34e3·25-s + 4.20e3·26-s + 3.50e3·27-s − 767.·28-s + 1.96e3·29-s − 2.74e3·30-s + ⋯
L(s)  = 1  − 0.714·2-s − 0.541·3-s − 0.489·4-s − 1.43·5-s + 0.387·6-s + 0.377·7-s + 1.06·8-s − 0.706·9-s + 1.02·10-s + 0.265·12-s − 1.70·13-s − 0.270·14-s + 0.779·15-s − 0.270·16-s + 1.15·17-s + 0.504·18-s − 1.95·19-s + 0.704·20-s − 0.204·21-s − 1.10·23-s − 0.576·24-s + 1.06·25-s + 1.22·26-s + 0.924·27-s − 0.185·28-s + 0.433·29-s − 0.556·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(135.845\)
Root analytic conductor: \(11.6552\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 847,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 49T \)
11 \( 1 \)
good2 \( 1 + 4.04T + 32T^{2} \)
3 \( 1 + 8.44T + 243T^{2} \)
5 \( 1 + 80.4T + 3.12e3T^{2} \)
13 \( 1 + 1.04e3T + 3.71e5T^{2} \)
17 \( 1 - 1.37e3T + 1.41e6T^{2} \)
19 \( 1 + 3.07e3T + 2.47e6T^{2} \)
23 \( 1 + 2.80e3T + 6.43e6T^{2} \)
29 \( 1 - 1.96e3T + 2.05e7T^{2} \)
31 \( 1 - 3.66e3T + 2.86e7T^{2} \)
37 \( 1 + 2.89e3T + 6.93e7T^{2} \)
41 \( 1 + 1.20e4T + 1.15e8T^{2} \)
43 \( 1 - 3.03e3T + 1.47e8T^{2} \)
47 \( 1 + 77.6T + 2.29e8T^{2} \)
53 \( 1 - 1.08e4T + 4.18e8T^{2} \)
59 \( 1 - 5.06e4T + 7.14e8T^{2} \)
61 \( 1 - 3.49e3T + 8.44e8T^{2} \)
67 \( 1 + 2.37e3T + 1.35e9T^{2} \)
71 \( 1 + 8.44e3T + 1.80e9T^{2} \)
73 \( 1 - 2.83e4T + 2.07e9T^{2} \)
79 \( 1 - 7.02e4T + 3.07e9T^{2} \)
83 \( 1 - 1.23e5T + 3.93e9T^{2} \)
89 \( 1 + 5.85e4T + 5.58e9T^{2} \)
97 \( 1 + 2.41e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.786457100604925064397137861965, −8.149029231242603474220433012529, −7.67694032715633811102803567565, −6.63566659785065906394049055117, −5.27863550319407011202207842406, −4.58758510409273492678028783650, −3.72657076377411650174994751876, −2.26688884517417117811447764662, −0.64848329120098837967478892039, 0, 0.64848329120098837967478892039, 2.26688884517417117811447764662, 3.72657076377411650174994751876, 4.58758510409273492678028783650, 5.27863550319407011202207842406, 6.63566659785065906394049055117, 7.67694032715633811102803567565, 8.149029231242603474220433012529, 8.786457100604925064397137861965

Graph of the $Z$-function along the critical line