Properties

Label 2-847-1.1-c3-0-135
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.70·2-s + 6.19·3-s + 14.1·4-s + 13.3·5-s + 29.1·6-s + 7·7-s + 29.0·8-s + 11.3·9-s + 63.0·10-s + 87.7·12-s + 59.1·13-s + 32.9·14-s + 82.9·15-s + 23.4·16-s − 47.9·17-s + 53.3·18-s + 39.4·19-s + 189.·20-s + 43.3·21-s − 100.·23-s + 179.·24-s + 54.3·25-s + 278.·26-s − 97.0·27-s + 99.1·28-s − 303.·29-s + 390.·30-s + ⋯
L(s)  = 1  + 1.66·2-s + 1.19·3-s + 1.77·4-s + 1.19·5-s + 1.98·6-s + 0.377·7-s + 1.28·8-s + 0.419·9-s + 1.99·10-s + 2.11·12-s + 1.26·13-s + 0.629·14-s + 1.42·15-s + 0.365·16-s − 0.684·17-s + 0.698·18-s + 0.476·19-s + 2.12·20-s + 0.450·21-s − 0.911·23-s + 1.52·24-s + 0.435·25-s + 2.10·26-s − 0.691·27-s + 0.669·28-s − 1.94·29-s + 2.37·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(10.50045383\)
\(L(\frac12)\) \(\approx\) \(10.50045383\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
11 \( 1 \)
good2 \( 1 - 4.70T + 8T^{2} \)
3 \( 1 - 6.19T + 27T^{2} \)
5 \( 1 - 13.3T + 125T^{2} \)
13 \( 1 - 59.1T + 2.19e3T^{2} \)
17 \( 1 + 47.9T + 4.91e3T^{2} \)
19 \( 1 - 39.4T + 6.85e3T^{2} \)
23 \( 1 + 100.T + 1.21e4T^{2} \)
29 \( 1 + 303.T + 2.43e4T^{2} \)
31 \( 1 + 45.1T + 2.97e4T^{2} \)
37 \( 1 + 215.T + 5.06e4T^{2} \)
41 \( 1 - 522.T + 6.89e4T^{2} \)
43 \( 1 - 347.T + 7.95e4T^{2} \)
47 \( 1 + 513.T + 1.03e5T^{2} \)
53 \( 1 + 163.T + 1.48e5T^{2} \)
59 \( 1 - 653.T + 2.05e5T^{2} \)
61 \( 1 - 595.T + 2.26e5T^{2} \)
67 \( 1 - 293.T + 3.00e5T^{2} \)
71 \( 1 - 361.T + 3.57e5T^{2} \)
73 \( 1 + 245.T + 3.89e5T^{2} \)
79 \( 1 + 1.14e3T + 4.93e5T^{2} \)
83 \( 1 - 1.07e3T + 5.71e5T^{2} \)
89 \( 1 + 612.T + 7.04e5T^{2} \)
97 \( 1 + 612.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.668052960006889253336440044254, −9.009985966797116223143246114822, −8.050167334362966500476036114596, −6.98222394877373161626528205279, −5.90661794754545675297722070852, −5.51874625423780523695346101815, −4.16101186765078900030992724682, −3.49331579732945962451835554429, −2.37454005265072005074171092437, −1.76704247533186477193243903046, 1.76704247533186477193243903046, 2.37454005265072005074171092437, 3.49331579732945962451835554429, 4.16101186765078900030992724682, 5.51874625423780523695346101815, 5.90661794754545675297722070852, 6.98222394877373161626528205279, 8.050167334362966500476036114596, 9.009985966797116223143246114822, 9.668052960006889253336440044254

Graph of the $Z$-function along the critical line