Properties

Label 2-847-1.1-c3-0-59
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.22·2-s + 2.34·3-s + 2.37·4-s + 11.1·5-s − 7.55·6-s + 7·7-s + 18.1·8-s − 21.4·9-s − 36.0·10-s + 5.57·12-s + 35.6·13-s − 22.5·14-s + 26.2·15-s − 77.3·16-s − 19.6·17-s + 69.2·18-s + 58.5·19-s + 26.5·20-s + 16.4·21-s + 37.8·23-s + 42.5·24-s − 0.0216·25-s − 114.·26-s − 113.·27-s + 16.6·28-s + 244.·29-s − 84.5·30-s + ⋯
L(s)  = 1  − 1.13·2-s + 0.451·3-s + 0.296·4-s + 0.999·5-s − 0.514·6-s + 0.377·7-s + 0.800·8-s − 0.795·9-s − 1.13·10-s + 0.134·12-s + 0.760·13-s − 0.430·14-s + 0.451·15-s − 1.20·16-s − 0.280·17-s + 0.906·18-s + 0.707·19-s + 0.296·20-s + 0.170·21-s + 0.343·23-s + 0.361·24-s − 0.000173·25-s − 0.866·26-s − 0.811·27-s + 0.112·28-s + 1.56·29-s − 0.514·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.560071358\)
\(L(\frac12)\) \(\approx\) \(1.560071358\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
11 \( 1 \)
good2 \( 1 + 3.22T + 8T^{2} \)
3 \( 1 - 2.34T + 27T^{2} \)
5 \( 1 - 11.1T + 125T^{2} \)
13 \( 1 - 35.6T + 2.19e3T^{2} \)
17 \( 1 + 19.6T + 4.91e3T^{2} \)
19 \( 1 - 58.5T + 6.85e3T^{2} \)
23 \( 1 - 37.8T + 1.21e4T^{2} \)
29 \( 1 - 244.T + 2.43e4T^{2} \)
31 \( 1 + 8.24T + 2.97e4T^{2} \)
37 \( 1 - 117.T + 5.06e4T^{2} \)
41 \( 1 + 143.T + 6.89e4T^{2} \)
43 \( 1 - 483.T + 7.95e4T^{2} \)
47 \( 1 - 368.T + 1.03e5T^{2} \)
53 \( 1 + 571.T + 1.48e5T^{2} \)
59 \( 1 - 57.4T + 2.05e5T^{2} \)
61 \( 1 + 806.T + 2.26e5T^{2} \)
67 \( 1 + 532.T + 3.00e5T^{2} \)
71 \( 1 + 119.T + 3.57e5T^{2} \)
73 \( 1 - 975.T + 3.89e5T^{2} \)
79 \( 1 - 286.T + 4.93e5T^{2} \)
83 \( 1 + 491.T + 5.71e5T^{2} \)
89 \( 1 - 1.24e3T + 7.04e5T^{2} \)
97 \( 1 + 132.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.466770796027933044715407186028, −9.097884456270909590036135471560, −8.294934633020554352886615250834, −7.62670423851240182197425399989, −6.43091742267189277912689226348, −5.55016725043876104726279301541, −4.43470378035558527020846013189, −2.96432318448902660999052504522, −1.89003960840299121679304185447, −0.835181770520087971482624683275, 0.835181770520087971482624683275, 1.89003960840299121679304185447, 2.96432318448902660999052504522, 4.43470378035558527020846013189, 5.55016725043876104726279301541, 6.43091742267189277912689226348, 7.62670423851240182197425399989, 8.294934633020554352886615250834, 9.097884456270909590036135471560, 9.466770796027933044715407186028

Graph of the $Z$-function along the critical line