Properties

Label 2-847-1.1-c3-0-116
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.42·2-s + 0.444·3-s + 21.4·4-s + 10.3·5-s + 2.41·6-s + 7·7-s + 72.8·8-s − 26.8·9-s + 56.2·10-s + 9.53·12-s − 8.18·13-s + 37.9·14-s + 4.61·15-s + 223.·16-s − 61.3·17-s − 145.·18-s + 98.0·19-s + 222.·20-s + 3.11·21-s + 181.·23-s + 32.4·24-s − 17.4·25-s − 44.3·26-s − 23.9·27-s + 150.·28-s + 131.·29-s + 25.0·30-s + ⋯
L(s)  = 1  + 1.91·2-s + 0.0856·3-s + 2.67·4-s + 0.927·5-s + 0.164·6-s + 0.377·7-s + 3.22·8-s − 0.992·9-s + 1.77·10-s + 0.229·12-s − 0.174·13-s + 0.724·14-s + 0.0794·15-s + 3.49·16-s − 0.875·17-s − 1.90·18-s + 1.18·19-s + 2.48·20-s + 0.0323·21-s + 1.64·23-s + 0.275·24-s − 0.139·25-s − 0.334·26-s − 0.170·27-s + 1.01·28-s + 0.845·29-s + 0.152·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.113306856\)
\(L(\frac12)\) \(\approx\) \(9.113306856\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
11 \( 1 \)
good2 \( 1 - 5.42T + 8T^{2} \)
3 \( 1 - 0.444T + 27T^{2} \)
5 \( 1 - 10.3T + 125T^{2} \)
13 \( 1 + 8.18T + 2.19e3T^{2} \)
17 \( 1 + 61.3T + 4.91e3T^{2} \)
19 \( 1 - 98.0T + 6.85e3T^{2} \)
23 \( 1 - 181.T + 1.21e4T^{2} \)
29 \( 1 - 131.T + 2.43e4T^{2} \)
31 \( 1 - 317.T + 2.97e4T^{2} \)
37 \( 1 + 298.T + 5.06e4T^{2} \)
41 \( 1 + 46.3T + 6.89e4T^{2} \)
43 \( 1 + 52.4T + 7.95e4T^{2} \)
47 \( 1 + 548.T + 1.03e5T^{2} \)
53 \( 1 + 52.2T + 1.48e5T^{2} \)
59 \( 1 + 636.T + 2.05e5T^{2} \)
61 \( 1 + 766.T + 2.26e5T^{2} \)
67 \( 1 - 470.T + 3.00e5T^{2} \)
71 \( 1 + 406.T + 3.57e5T^{2} \)
73 \( 1 + 867.T + 3.89e5T^{2} \)
79 \( 1 - 441.T + 4.93e5T^{2} \)
83 \( 1 - 1.14e3T + 5.71e5T^{2} \)
89 \( 1 - 353.T + 7.04e5T^{2} \)
97 \( 1 + 1.53e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11799623249350030886782948507, −8.941412991944402782448180029110, −7.80334187292767620567748342118, −6.71166795969366435336027536072, −6.13314758330019986209888345376, −5.13766083397801409779545946196, −4.75635355079015629104835055030, −3.24666285940320894932831012740, −2.64896602319485925343473610246, −1.49717932884271529545063478804, 1.49717932884271529545063478804, 2.64896602319485925343473610246, 3.24666285940320894932831012740, 4.75635355079015629104835055030, 5.13766083397801409779545946196, 6.13314758330019986209888345376, 6.71166795969366435336027536072, 7.80334187292767620567748342118, 8.941412991944402782448180029110, 10.11799623249350030886782948507

Graph of the $Z$-function along the critical line