Properties

Label 2-847-1.1-c3-0-36
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.48·2-s − 5.42·3-s − 1.80·4-s + 4.00·5-s − 13.5·6-s + 7·7-s − 24.4·8-s + 2.43·9-s + 9.96·10-s + 9.77·12-s + 51.9·13-s + 17.4·14-s − 21.7·15-s − 46.3·16-s − 59.1·17-s + 6.06·18-s − 13.7·19-s − 7.21·20-s − 37.9·21-s − 105.·23-s + 132.·24-s − 108.·25-s + 129.·26-s + 133.·27-s − 12.6·28-s − 106.·29-s − 54.0·30-s + ⋯
L(s)  = 1  + 0.880·2-s − 1.04·3-s − 0.225·4-s + 0.358·5-s − 0.919·6-s + 0.377·7-s − 1.07·8-s + 0.0902·9-s + 0.315·10-s + 0.235·12-s + 1.10·13-s + 0.332·14-s − 0.373·15-s − 0.723·16-s − 0.843·17-s + 0.0794·18-s − 0.165·19-s − 0.0806·20-s − 0.394·21-s − 0.954·23-s + 1.12·24-s − 0.871·25-s + 0.974·26-s + 0.949·27-s − 0.0851·28-s − 0.684·29-s − 0.329·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.609322914\)
\(L(\frac12)\) \(\approx\) \(1.609322914\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
11 \( 1 \)
good2 \( 1 - 2.48T + 8T^{2} \)
3 \( 1 + 5.42T + 27T^{2} \)
5 \( 1 - 4.00T + 125T^{2} \)
13 \( 1 - 51.9T + 2.19e3T^{2} \)
17 \( 1 + 59.1T + 4.91e3T^{2} \)
19 \( 1 + 13.7T + 6.85e3T^{2} \)
23 \( 1 + 105.T + 1.21e4T^{2} \)
29 \( 1 + 106.T + 2.43e4T^{2} \)
31 \( 1 - 134.T + 2.97e4T^{2} \)
37 \( 1 - 63.0T + 5.06e4T^{2} \)
41 \( 1 + 200.T + 6.89e4T^{2} \)
43 \( 1 - 233.T + 7.95e4T^{2} \)
47 \( 1 - 251.T + 1.03e5T^{2} \)
53 \( 1 - 639.T + 1.48e5T^{2} \)
59 \( 1 - 635.T + 2.05e5T^{2} \)
61 \( 1 + 64.1T + 2.26e5T^{2} \)
67 \( 1 + 118.T + 3.00e5T^{2} \)
71 \( 1 - 633.T + 3.57e5T^{2} \)
73 \( 1 - 677.T + 3.89e5T^{2} \)
79 \( 1 - 205.T + 4.93e5T^{2} \)
83 \( 1 + 642.T + 5.71e5T^{2} \)
89 \( 1 - 527.T + 7.04e5T^{2} \)
97 \( 1 + 795.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.959803487519015853948514122640, −8.919866431381794476886903221783, −8.211387972420303681502792767476, −6.75842096354881219637587277142, −5.93688156227225061180796605519, −5.54075121820139536138566025007, −4.49395680853310901576187267251, −3.73511353127276419596727485268, −2.24809501250796156592893204049, −0.63899910880212363937277447871, 0.63899910880212363937277447871, 2.24809501250796156592893204049, 3.73511353127276419596727485268, 4.49395680853310901576187267251, 5.54075121820139536138566025007, 5.93688156227225061180796605519, 6.75842096354881219637587277142, 8.211387972420303681502792767476, 8.919866431381794476886903221783, 9.959803487519015853948514122640

Graph of the $Z$-function along the critical line