Properties

Label 2-92e2-1.1-c1-0-104
Degree $2$
Conductor $8464$
Sign $-1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.27·3-s + 1.62·5-s − 3.69·7-s + 2.19·9-s − 5.39·11-s − 0.869·13-s − 3.69·15-s − 3.44·17-s + 5.99·19-s + 8.43·21-s − 2.36·25-s + 1.82·27-s + 6.59·29-s − 6.66·31-s + 12.2·33-s − 6.00·35-s + 1.89·37-s + 1.98·39-s + 8.09·41-s + 12.3·43-s + 3.56·45-s + 3.55·47-s + 6.68·49-s + 7.85·51-s + 8.82·53-s − 8.75·55-s − 13.6·57-s + ⋯
L(s)  = 1  − 1.31·3-s + 0.725·5-s − 1.39·7-s + 0.732·9-s − 1.62·11-s − 0.241·13-s − 0.955·15-s − 0.835·17-s + 1.37·19-s + 1.84·21-s − 0.473·25-s + 0.351·27-s + 1.22·29-s − 1.19·31-s + 2.14·33-s − 1.01·35-s + 0.311·37-s + 0.317·39-s + 1.26·41-s + 1.88·43-s + 0.531·45-s + 0.518·47-s + 0.955·49-s + 1.09·51-s + 1.21·53-s − 1.17·55-s − 1.80·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + 2.27T + 3T^{2} \)
5 \( 1 - 1.62T + 5T^{2} \)
7 \( 1 + 3.69T + 7T^{2} \)
11 \( 1 + 5.39T + 11T^{2} \)
13 \( 1 + 0.869T + 13T^{2} \)
17 \( 1 + 3.44T + 17T^{2} \)
19 \( 1 - 5.99T + 19T^{2} \)
29 \( 1 - 6.59T + 29T^{2} \)
31 \( 1 + 6.66T + 31T^{2} \)
37 \( 1 - 1.89T + 37T^{2} \)
41 \( 1 - 8.09T + 41T^{2} \)
43 \( 1 - 12.3T + 43T^{2} \)
47 \( 1 - 3.55T + 47T^{2} \)
53 \( 1 - 8.82T + 53T^{2} \)
59 \( 1 + 12.5T + 59T^{2} \)
61 \( 1 - 7.43T + 61T^{2} \)
67 \( 1 + 7.08T + 67T^{2} \)
71 \( 1 + 0.0791T + 71T^{2} \)
73 \( 1 - 3.26T + 73T^{2} \)
79 \( 1 - 9.31T + 79T^{2} \)
83 \( 1 - 14.6T + 83T^{2} \)
89 \( 1 - 2.62T + 89T^{2} \)
97 \( 1 + 3.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29991498513920080934608635874, −6.55801409234022879651890440384, −5.94727759155831284313814828859, −5.53047634538012507363960697114, −4.95533673764185273598693567460, −3.98725327773989230937879933766, −2.85920937447918190692691819739, −2.39820222175631320187018973856, −0.878988879871907832555873084771, 0, 0.878988879871907832555873084771, 2.39820222175631320187018973856, 2.85920937447918190692691819739, 3.98725327773989230937879933766, 4.95533673764185273598693567460, 5.53047634538012507363960697114, 5.94727759155831284313814828859, 6.55801409234022879651890440384, 7.29991498513920080934608635874

Graph of the $Z$-function along the critical line