Properties

Label 2-92e2-1.1-c1-0-224
Degree $2$
Conductor $8464$
Sign $-1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.38·3-s + 0.0992·5-s + 0.236·7-s + 2.66·9-s − 2.12·11-s − 5.09·13-s + 0.236·15-s + 6.44·17-s − 0.582·19-s + 0.562·21-s − 4.99·25-s − 0.793·27-s + 3.65·29-s + 3.91·31-s − 5.04·33-s + 0.0234·35-s − 7.09·37-s − 12.1·39-s − 7.57·41-s − 10.7·43-s + 0.264·45-s − 10.8·47-s − 6.94·49-s + 15.3·51-s − 6.54·53-s − 0.210·55-s − 1.38·57-s + ⋯
L(s)  = 1  + 1.37·3-s + 0.0444·5-s + 0.0893·7-s + 0.888·9-s − 0.639·11-s − 1.41·13-s + 0.0610·15-s + 1.56·17-s − 0.133·19-s + 0.122·21-s − 0.998·25-s − 0.152·27-s + 0.678·29-s + 0.702·31-s − 0.878·33-s + 0.00396·35-s − 1.16·37-s − 1.94·39-s − 1.18·41-s − 1.63·43-s + 0.0394·45-s − 1.58·47-s − 0.992·49-s + 2.14·51-s − 0.898·53-s − 0.0283·55-s − 0.183·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - 2.38T + 3T^{2} \)
5 \( 1 - 0.0992T + 5T^{2} \)
7 \( 1 - 0.236T + 7T^{2} \)
11 \( 1 + 2.12T + 11T^{2} \)
13 \( 1 + 5.09T + 13T^{2} \)
17 \( 1 - 6.44T + 17T^{2} \)
19 \( 1 + 0.582T + 19T^{2} \)
29 \( 1 - 3.65T + 29T^{2} \)
31 \( 1 - 3.91T + 31T^{2} \)
37 \( 1 + 7.09T + 37T^{2} \)
41 \( 1 + 7.57T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 10.8T + 47T^{2} \)
53 \( 1 + 6.54T + 53T^{2} \)
59 \( 1 + 8.89T + 59T^{2} \)
61 \( 1 - 4.79T + 61T^{2} \)
67 \( 1 + 3.29T + 67T^{2} \)
71 \( 1 - 12.2T + 71T^{2} \)
73 \( 1 + 3.90T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 7.31T + 83T^{2} \)
89 \( 1 - 3.04T + 89T^{2} \)
97 \( 1 + 4.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70869952658815897121002798960, −6.99109758448799249748248485240, −6.13578884087744829926138180290, −5.07386756449174661903305574284, −4.78511419575949754382997615063, −3.40189187308504755888843886003, −3.25874101990929776115653576027, −2.27326826677577768627254589832, −1.60497105986751382268345379453, 0, 1.60497105986751382268345379453, 2.27326826677577768627254589832, 3.25874101990929776115653576027, 3.40189187308504755888843886003, 4.78511419575949754382997615063, 5.07386756449174661903305574284, 6.13578884087744829926138180290, 6.99109758448799249748248485240, 7.70869952658815897121002798960

Graph of the $Z$-function along the critical line