Properties

Label 2-92e2-1.1-c1-0-217
Degree $2$
Conductor $8464$
Sign $-1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.22·3-s − 2.37·5-s − 0.397·7-s + 7.42·9-s − 3.21·11-s + 0.155·13-s − 7.66·15-s − 3.28·17-s + 2.84·19-s − 1.28·21-s + 0.630·25-s + 14.2·27-s + 0.378·29-s − 2.74·31-s − 10.3·33-s + 0.944·35-s − 6.42·37-s + 0.501·39-s − 4.00·41-s + 7.43·43-s − 17.6·45-s − 2.97·47-s − 6.84·49-s − 10.5·51-s − 13.0·53-s + 7.61·55-s + 9.18·57-s + ⋯
L(s)  = 1  + 1.86·3-s − 1.06·5-s − 0.150·7-s + 2.47·9-s − 0.968·11-s + 0.0431·13-s − 1.97·15-s − 0.796·17-s + 0.652·19-s − 0.280·21-s + 0.126·25-s + 2.74·27-s + 0.0703·29-s − 0.493·31-s − 1.80·33-s + 0.159·35-s − 1.05·37-s + 0.0803·39-s − 0.625·41-s + 1.13·43-s − 2.62·45-s − 0.433·47-s − 0.977·49-s − 1.48·51-s − 1.79·53-s + 1.02·55-s + 1.21·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - 3.22T + 3T^{2} \)
5 \( 1 + 2.37T + 5T^{2} \)
7 \( 1 + 0.397T + 7T^{2} \)
11 \( 1 + 3.21T + 11T^{2} \)
13 \( 1 - 0.155T + 13T^{2} \)
17 \( 1 + 3.28T + 17T^{2} \)
19 \( 1 - 2.84T + 19T^{2} \)
29 \( 1 - 0.378T + 29T^{2} \)
31 \( 1 + 2.74T + 31T^{2} \)
37 \( 1 + 6.42T + 37T^{2} \)
41 \( 1 + 4.00T + 41T^{2} \)
43 \( 1 - 7.43T + 43T^{2} \)
47 \( 1 + 2.97T + 47T^{2} \)
53 \( 1 + 13.0T + 53T^{2} \)
59 \( 1 + 8.64T + 59T^{2} \)
61 \( 1 + 11.1T + 61T^{2} \)
67 \( 1 - 8.40T + 67T^{2} \)
71 \( 1 + 0.356T + 71T^{2} \)
73 \( 1 - 5.63T + 73T^{2} \)
79 \( 1 + 7.53T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 + 2.16T + 89T^{2} \)
97 \( 1 - 2.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59831148053830956772499977871, −7.18341132898164420879737714182, −6.29637227174810968429704894044, −5.02330702719151618037504153526, −4.45503361147431795102068956043, −3.57787180335685266117565295894, −3.21258993748572409187962318761, −2.40633836843702172703854928960, −1.54447487622889567353417106819, 0, 1.54447487622889567353417106819, 2.40633836843702172703854928960, 3.21258993748572409187962318761, 3.57787180335685266117565295894, 4.45503361147431795102068956043, 5.02330702719151618037504153526, 6.29637227174810968429704894044, 7.18341132898164420879737714182, 7.59831148053830956772499977871

Graph of the $Z$-function along the critical line