Properties

Label 2-92e2-1.1-c1-0-166
Degree $2$
Conductor $8464$
Sign $-1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·3-s − 3.93·5-s + 2.73·7-s − 0.999·9-s − 2.73·11-s − 2.03·13-s − 5.56·15-s + 6.44·17-s + 3.56·19-s + 3.86·21-s + 10.4·25-s − 5.65·27-s − 5.52·29-s + 1.60·31-s − 3.86·33-s − 10.7·35-s + 9.84·37-s − 2.87·39-s − 4.46·41-s − 11.8·43-s + 3.93·45-s + 9.98·47-s + 0.464·49-s + 9.12·51-s + 5.53·53-s + 10.7·55-s + 5.03·57-s + ⋯
L(s)  = 1  + 0.816·3-s − 1.75·5-s + 1.03·7-s − 0.333·9-s − 0.823·11-s − 0.564·13-s − 1.43·15-s + 1.56·17-s + 0.816·19-s + 0.843·21-s + 2.09·25-s − 1.08·27-s − 1.02·29-s + 0.287·31-s − 0.672·33-s − 1.81·35-s + 1.61·37-s − 0.460·39-s − 0.697·41-s − 1.80·43-s + 0.586·45-s + 1.45·47-s + 0.0663·49-s + 1.27·51-s + 0.760·53-s + 1.44·55-s + 0.666·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - 1.41T + 3T^{2} \)
5 \( 1 + 3.93T + 5T^{2} \)
7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 + 2.73T + 11T^{2} \)
13 \( 1 + 2.03T + 13T^{2} \)
17 \( 1 - 6.44T + 17T^{2} \)
19 \( 1 - 3.56T + 19T^{2} \)
29 \( 1 + 5.52T + 29T^{2} \)
31 \( 1 - 1.60T + 31T^{2} \)
37 \( 1 - 9.84T + 37T^{2} \)
41 \( 1 + 4.46T + 41T^{2} \)
43 \( 1 + 11.8T + 43T^{2} \)
47 \( 1 - 9.98T + 47T^{2} \)
53 \( 1 - 5.53T + 53T^{2} \)
59 \( 1 + 12.3T + 59T^{2} \)
61 \( 1 + 0.118T + 61T^{2} \)
67 \( 1 + 12.2T + 67T^{2} \)
71 \( 1 + 3.44T + 71T^{2} \)
73 \( 1 + 2.53T + 73T^{2} \)
79 \( 1 + 1.12T + 79T^{2} \)
83 \( 1 - 18.0T + 83T^{2} \)
89 \( 1 - 9.65T + 89T^{2} \)
97 \( 1 + 5.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59179805719991720536646527391, −7.37924377175986520544245279653, −5.95939714041264396673894721988, −5.12565534400499838265946210325, −4.64780598576531845564710443201, −3.65819589647433975302277838043, −3.22658193588104805481176340776, −2.43206559656179885045238841589, −1.20697507360982634155648026888, 0, 1.20697507360982634155648026888, 2.43206559656179885045238841589, 3.22658193588104805481176340776, 3.65819589647433975302277838043, 4.64780598576531845564710443201, 5.12565534400499838265946210325, 5.95939714041264396673894721988, 7.37924377175986520544245279653, 7.59179805719991720536646527391

Graph of the $Z$-function along the critical line