Properties

Label 2-8450-1.1-c1-0-236
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.49·3-s + 4-s + 1.49·6-s + 1.01·7-s + 8-s − 0.763·9-s − 2.42·11-s + 1.49·12-s + 1.01·14-s + 16-s − 5.04·17-s − 0.763·18-s − 7.36·19-s + 1.52·21-s − 2.42·22-s − 4.52·23-s + 1.49·24-s − 5.62·27-s + 1.01·28-s + 6.38·29-s + 6.28·31-s + 32-s − 3.61·33-s − 5.04·34-s − 0.763·36-s + 1.80·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.863·3-s + 0.5·4-s + 0.610·6-s + 0.385·7-s + 0.353·8-s − 0.254·9-s − 0.729·11-s + 0.431·12-s + 0.272·14-s + 0.250·16-s − 1.22·17-s − 0.180·18-s − 1.68·19-s + 0.332·21-s − 0.515·22-s − 0.943·23-s + 0.305·24-s − 1.08·27-s + 0.192·28-s + 1.18·29-s + 1.12·31-s + 0.176·32-s − 0.630·33-s − 0.865·34-s − 0.127·36-s + 0.296·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 - 1.49T + 3T^{2} \)
7 \( 1 - 1.01T + 7T^{2} \)
11 \( 1 + 2.42T + 11T^{2} \)
17 \( 1 + 5.04T + 17T^{2} \)
19 \( 1 + 7.36T + 19T^{2} \)
23 \( 1 + 4.52T + 23T^{2} \)
29 \( 1 - 6.38T + 29T^{2} \)
31 \( 1 - 6.28T + 31T^{2} \)
37 \( 1 - 1.80T + 37T^{2} \)
41 \( 1 - 0.399T + 41T^{2} \)
43 \( 1 - 8.41T + 43T^{2} \)
47 \( 1 + 0.146T + 47T^{2} \)
53 \( 1 + 1.52T + 53T^{2} \)
59 \( 1 + 3.23T + 59T^{2} \)
61 \( 1 + 14.1T + 61T^{2} \)
67 \( 1 + 6.59T + 67T^{2} \)
71 \( 1 + 1.36T + 71T^{2} \)
73 \( 1 - 15.9T + 73T^{2} \)
79 \( 1 + 3.53T + 79T^{2} \)
83 \( 1 + 4.64T + 83T^{2} \)
89 \( 1 + 5.60T + 89T^{2} \)
97 \( 1 + 8.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59596089942442378181031383297, −6.52489676138631889701044509360, −6.20493922587279050303681434531, −5.24970964222199208350951307679, −4.38884855102731753267313982580, −4.09964514234914736145383020601, −2.81801620015835015259326008395, −2.55563177816145732297825492160, −1.68371460417550622847748397221, 0, 1.68371460417550622847748397221, 2.55563177816145732297825492160, 2.81801620015835015259326008395, 4.09964514234914736145383020601, 4.38884855102731753267313982580, 5.24970964222199208350951307679, 6.20493922587279050303681434531, 6.52489676138631889701044509360, 7.59596089942442378181031383297

Graph of the $Z$-function along the critical line