Properties

Label 8-8450e4-1.1-c1e4-0-5
Degree $8$
Conductor $5.098\times 10^{15}$
Sign $1$
Analytic cond. $2.07269\times 10^{7}$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 10·4-s − 2·7-s − 20·8-s − 5·9-s + 8·14-s + 35·16-s + 20·18-s − 20·28-s + 12·29-s − 56·32-s − 50·36-s − 2·37-s − 30·47-s − 9·49-s + 40·56-s − 48·58-s − 4·61-s + 10·63-s + 84·64-s − 16·67-s + 100·72-s − 40·73-s + 8·74-s + 4·79-s + 9·81-s + 12·83-s + ⋯
L(s)  = 1  − 2.82·2-s + 5·4-s − 0.755·7-s − 7.07·8-s − 5/3·9-s + 2.13·14-s + 35/4·16-s + 4.71·18-s − 3.77·28-s + 2.22·29-s − 9.89·32-s − 8.33·36-s − 0.328·37-s − 4.37·47-s − 9/7·49-s + 5.34·56-s − 6.30·58-s − 0.512·61-s + 1.25·63-s + 21/2·64-s − 1.95·67-s + 11.7·72-s − 4.68·73-s + 0.929·74-s + 0.450·79-s + 81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(2.07269\times 10^{7}\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{4} \cdot 5^{8} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( ( 1 + T )^{4} \)
5 \( 1 \)
13 \( 1 \)
good3$C_2^3$ \( 1 + 5 T^{2} + 16 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \) 4.3.a_f_a_q
7$D_{4}$ \( ( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \) 4.7.c_n_ba_fs
11$D_4$ \( 1 + 16 T^{2} + 174 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_q_a_gs
17$D_4\times C_2$ \( 1 + 25 T^{2} + 528 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \) 4.17.a_z_a_ui
19$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_ca_a_cbu
23$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_e_a_bow
29$D_{4}$ \( ( 1 - 6 T + 34 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.am_ea_abdc_hhm
31$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \) 4.31.a_dw_a_goc
37$D_{4}$ \( ( 1 + T + p T^{3} + p^{2} T^{4} )^{2} \) 4.37.c_b_cw_eee
41$D_4\times C_2$ \( 1 + 52 T^{2} + 1926 T^{4} + 52 p^{2} T^{6} + p^{4} T^{8} \) 4.41.a_ca_a_cwc
43$D_4\times C_2$ \( 1 + 85 T^{2} + 3648 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \) 4.43.a_dh_a_fki
47$D_{4}$ \( ( 1 + 15 T + 142 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.be_tp_ikc_cpqy
53$D_4\times C_2$ \( 1 + 184 T^{2} + 13950 T^{4} + 184 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_hc_a_uqo
59$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_fs_a_skk
61$D_{4}$ \( ( 1 + 2 T + 90 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.e_hc_xg_xso
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \) 4.67.q_oa_fdo_chgo
71$D_4\times C_2$ \( 1 + 109 T^{2} + 7896 T^{4} + 109 p^{2} T^{6} + p^{4} T^{8} \) 4.71.a_ef_a_lrs
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \) 4.73.bo_bii_swu_hjrq
79$D_{4}$ \( ( 1 - 2 T + 126 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.ae_jw_abfo_bqxa
83$D_{4}$ \( ( 1 - 6 T + 142 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.am_mi_adzw_chbi
89$D_4\times C_2$ \( 1 + 280 T^{2} + 34254 T^{4} + 280 p^{2} T^{6} + p^{4} T^{8} \) 4.89.a_ku_a_byrm
97$D_{4}$ \( ( 1 + 2 T + 162 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.97.e_mq_bnw_cpva
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.02486752715796225740238449107, −5.79711519560780346492074366205, −5.51978875209916430181453759208, −5.43770709401926026291630519226, −5.18484718498144683031395584496, −4.87587263847624816992014972598, −4.80166769099712196827275717587, −4.62247829759366711522783419826, −4.49687556462840375380241076876, −4.01576462632616592774216914823, −3.86946294201935690471533228784, −3.60666513487409821007672997369, −3.33582818191721729292146432678, −3.02617188205881403046050796644, −3.01526554152335657197715478194, −2.94549764019415917482934897336, −2.94166830332141332145840846094, −2.47853571552205990360268336238, −2.18752170937705188713179368957, −2.01654657980951131757004724244, −1.67867441121874570178700512616, −1.66563605111273571618298122307, −1.15858172498299653770357819075, −1.02542880852711061082041898181, −0.944206183046667200031165653308, 0, 0, 0, 0, 0.944206183046667200031165653308, 1.02542880852711061082041898181, 1.15858172498299653770357819075, 1.66563605111273571618298122307, 1.67867441121874570178700512616, 2.01654657980951131757004724244, 2.18752170937705188713179368957, 2.47853571552205990360268336238, 2.94166830332141332145840846094, 2.94549764019415917482934897336, 3.01526554152335657197715478194, 3.02617188205881403046050796644, 3.33582818191721729292146432678, 3.60666513487409821007672997369, 3.86946294201935690471533228784, 4.01576462632616592774216914823, 4.49687556462840375380241076876, 4.62247829759366711522783419826, 4.80166769099712196827275717587, 4.87587263847624816992014972598, 5.18484718498144683031395584496, 5.43770709401926026291630519226, 5.51978875209916430181453759208, 5.79711519560780346492074366205, 6.02486752715796225740238449107

Graph of the $Z$-function along the critical line