L(s) = 1 | + (2.29 − 1.32i)2-s + (0.335 − 1.25i)3-s + (2.51 − 4.34i)4-s + (−1.81 − 1.30i)5-s + (−0.889 − 3.31i)6-s + (−0.0561 + 0.0972i)7-s − 8.00i·8-s + (1.14 + 0.658i)9-s + (−5.89 − 0.585i)10-s + (−0.479 + 1.78i)11-s + (−4.60 − 4.60i)12-s + 0.297i·14-s + (−2.24 + 1.83i)15-s + (−5.58 − 9.67i)16-s + (−2.63 + 0.706i)17-s + 3.49·18-s + ⋯ |
L(s) = 1 | + (1.62 − 0.936i)2-s + (0.193 − 0.723i)3-s + (1.25 − 2.17i)4-s + (−0.812 − 0.583i)5-s + (−0.363 − 1.35i)6-s + (−0.0212 + 0.0367i)7-s − 2.83i·8-s + (0.380 + 0.219i)9-s + (−1.86 − 0.185i)10-s + (−0.144 + 0.539i)11-s + (−1.32 − 1.32i)12-s + 0.0795i·14-s + (−0.579 + 0.474i)15-s + (−1.39 − 2.41i)16-s + (−0.639 + 0.171i)17-s + 0.823·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.907 + 0.419i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.907 + 0.419i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.794430 - 3.60963i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.794430 - 3.60963i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.81 + 1.30i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-2.29 + 1.32i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.335 + 1.25i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (0.0561 - 0.0972i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.479 - 1.78i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.63 - 0.706i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-6.72 + 1.80i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (3.10 + 0.831i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (4.03 - 2.32i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.624 + 0.624i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.737 - 1.27i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.24 - 1.40i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.00 - 3.76i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 0.345T + 47T^{2} \) |
| 53 | \( 1 + (3.59 + 3.59i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.332 + 1.24i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.39 + 2.41i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.124 - 0.0721i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.41 - 5.28i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 9.06iT - 73T^{2} \) |
| 79 | \( 1 + 15.1iT - 79T^{2} \) |
| 83 | \( 1 + 8.53T + 83T^{2} \) |
| 89 | \( 1 + (0.549 + 0.147i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-12.9 - 7.48i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12820580649799583915795286112, −9.194644636926210437933219424319, −7.79558309902492496714691104451, −7.16001674266519600396570003922, −6.09975358172672587590107080270, −4.98300079295462196042778397050, −4.41066552704310677017729342400, −3.38511425743554146208348108701, −2.24648481871227322633811679537, −1.15999794376129867925438911345,
2.75673271966619448258117154613, 3.68760713752667982342423155090, 4.12355613110602929984104479015, 5.18439846547061191776262137297, 6.05734580128983081210166908273, 7.07669070613934112667835122311, 7.58787695922580626936114688591, 8.544244022442877807402479046263, 9.734512533712793469608257774629, 10.85576465196533939675682965450