L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.366 + 1.36i)3-s + (−0.500 − 0.866i)4-s + (−2 − i)5-s + (0.366 − 1.36i)6-s + (1 + 1.73i)7-s + 3i·8-s + (0.866 − 0.5i)9-s + (1.23 + 1.86i)10-s + (−0.366 − 1.36i)11-s + (0.999 − i)12-s − 1.99i·14-s + (0.633 − 3.09i)15-s + (0.500 − 0.866i)16-s + (1.36 + 0.366i)17-s − 18-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.211 + 0.788i)3-s + (−0.250 − 0.433i)4-s + (−0.894 − 0.447i)5-s + (0.149 − 0.557i)6-s + (0.377 + 0.654i)7-s + 1.06i·8-s + (0.288 − 0.166i)9-s + (0.389 + 0.590i)10-s + (−0.110 − 0.411i)11-s + (0.288 − 0.288i)12-s − 0.534i·14-s + (0.163 − 0.799i)15-s + (0.125 − 0.216i)16-s + (0.331 + 0.0887i)17-s − 0.235·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.956356 - 0.0607369i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.956356 - 0.0607369i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2 + i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.866 + 0.5i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.366 - 1.36i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-1 - 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.366 + 1.36i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.36 - 0.366i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (6.83 + 1.83i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-4.09 + 1.09i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5 - 5i)T + 31iT^{2} \) |
| 37 | \( 1 + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-9.56 + 2.56i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-0.366 + 1.36i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + (-5 + 5i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.56 + 9.56i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-7 - 12.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.46 - 2i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.366 + 1.36i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-6.83 + 1.83i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.73 + i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24343923532819926644613250141, −9.130651528527073695652168160288, −8.759648041894502615537226403542, −8.127769123656072130740495433498, −6.82012336302151151092570130347, −5.48985539108135282744121919558, −4.72891646305444471610451719586, −3.90408835595599430050728113651, −2.50209419819289814601552648467, −0.893210652838899622041517008259,
0.868612938054539789621752417576, 2.54272976493798256789409814973, 3.94994644912632003462453801905, 4.52825733532712265312220644415, 6.38065377938440655514055713831, 7.12338087571802350040542039832, 7.75589007786310678918162149006, 8.113202537448552600784157475710, 9.132621401544678723312042178425, 10.24117846924266228253143435837