| L(s) = 1 | + (0.915 − 1.58i)2-s + (1.91 − 0.512i)3-s + (−0.677 − 1.17i)4-s + (−1.45 + 1.69i)5-s + (0.939 − 3.50i)6-s + (3.06 − 1.76i)7-s + 1.18·8-s + (0.803 − 0.463i)9-s + (1.36 + 3.86i)10-s + (1.00 + 3.74i)11-s + (−1.89 − 1.89i)12-s − 6.48i·14-s + (−1.91 + 3.99i)15-s + (2.43 − 4.22i)16-s + (0.524 − 1.95i)17-s − 1.69i·18-s + ⋯ |
| L(s) = 1 | + (0.647 − 1.12i)2-s + (1.10 − 0.296i)3-s + (−0.338 − 0.586i)4-s + (−0.650 + 0.759i)5-s + (0.383 − 1.43i)6-s + (1.15 − 0.668i)7-s + 0.417·8-s + (0.267 − 0.154i)9-s + (0.430 + 1.22i)10-s + (0.302 + 1.12i)11-s + (−0.548 − 0.548i)12-s − 1.73i·14-s + (−0.494 + 1.03i)15-s + (0.609 − 1.05i)16-s + (0.127 − 0.474i)17-s − 0.400i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.62511 - 1.99681i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.62511 - 1.99681i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (1.45 - 1.69i)T \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.915 + 1.58i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.91 + 0.512i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-3.06 + 1.76i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.00 - 3.74i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.524 + 1.95i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.518 - 0.139i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.0788 - 0.294i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-1.71 - 0.988i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.13 + 4.13i)T + 31iT^{2} \) |
| 37 | \( 1 + (4.69 + 2.70i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.649 - 0.174i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (8.51 + 2.28i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 - 9.75iT - 47T^{2} \) |
| 53 | \( 1 + (-3.16 - 3.16i)T + 53iT^{2} \) |
| 59 | \( 1 + (-3.14 + 11.7i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.44 - 2.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.14 + 1.98i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.19 + 4.46i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 14.7T + 73T^{2} \) |
| 79 | \( 1 + 1.59iT - 79T^{2} \) |
| 83 | \( 1 - 7.57iT - 83T^{2} \) |
| 89 | \( 1 + (-4.54 + 1.21i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-8.91 - 15.4i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29760016360969365138422886596, −9.335530540777469107845435996794, −8.100975353316205801811523987400, −7.58297563357195966197882355531, −6.96464185334971982266241877729, −5.06999605810188074431303717346, −4.19829214860436540843135031731, −3.46136288512181360571214763750, −2.45117700777851483328489642986, −1.60267395104275816436228449021,
1.64032157363093911691954204858, 3.31336784933127025960214804576, 4.17279983744360490316144516291, 5.13269475021819877710358263238, 5.76920243333591464881916221701, 7.03941288138552790235508061012, 8.060791113377232438456854063682, 8.503324610473645608422338843115, 8.857783240001120634396615417642, 10.26578347542730635842501488536