L(s) = 1 | + (0.5 + 0.866i)2-s + (−1.36 − 0.366i)3-s + (0.500 − 0.866i)4-s + (1 − 2i)5-s + (−0.366 − 1.36i)6-s + (−1.73 − i)7-s + 3·8-s + (−0.866 − 0.5i)9-s + (2.23 − 0.133i)10-s + (0.366 − 1.36i)11-s + (−1 + 0.999i)12-s − 1.99i·14-s + (−2.09 + 2.36i)15-s + (0.500 + 0.866i)16-s + (0.366 + 1.36i)17-s − i·18-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.788 − 0.211i)3-s + (0.250 − 0.433i)4-s + (0.447 − 0.894i)5-s + (−0.149 − 0.557i)6-s + (−0.654 − 0.377i)7-s + 1.06·8-s + (−0.288 − 0.166i)9-s + (0.705 − 0.0423i)10-s + (0.110 − 0.411i)11-s + (−0.288 + 0.288i)12-s − 0.534i·14-s + (−0.541 + 0.610i)15-s + (0.125 + 0.216i)16-s + (0.0887 + 0.331i)17-s − 0.235i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.384 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.384 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.626960 - 0.940713i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.626960 - 0.940713i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1 + 2i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.36 + 0.366i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (1.73 + i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.366 + 1.36i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.366 - 1.36i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (6.83 - 1.83i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.09 + 4.09i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5 - 5i)T - 31iT^{2} \) |
| 37 | \( 1 + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (9.56 + 2.56i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.36 + 0.366i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 6iT - 47T^{2} \) |
| 53 | \( 1 + (-5 + 5i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.56 - 9.56i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-7 + 12.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2 + 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.366 + 1.36i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 + (-6.83 - 1.83i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19549272061727955806387828851, −8.955859630241914972372358941897, −8.262033229595846567634401329591, −6.80368157951640867007143410890, −6.44580752645922514953039390207, −5.60980605495080133617974476459, −4.94957849590935818683758767804, −3.76841766050824419956630416040, −1.91208787449550532397909569638, −0.50834165305357770876765121683,
2.09547701036749397807307736023, 2.91226321948930522806055986296, 3.98050418044936732793021391095, 5.12875216718643415235672610039, 6.13399703354736778658056938385, 6.81205952455584408522521634303, 7.73808921676559757555037762598, 8.968744263262889397160377606994, 9.982290964246733707617549114306, 10.63736560339051093358910780671