L(s) = 1 | + (−1.05 − 0.607i)2-s + (−1.13 − 0.655i)3-s + (−0.262 − 0.455i)4-s + (−2.21 − 0.311i)5-s + (0.796 + 1.37i)6-s + (−2.51 + 1.45i)7-s + 3.06i·8-s + (−0.640 − 1.10i)9-s + (2.13 + 1.67i)10-s + (−0.107 + 0.185i)11-s + 0.688i·12-s + 3.52·14-s + (2.31 + 1.80i)15-s + (1.33 − 2.31i)16-s + (−5.56 + 3.21i)17-s + 1.55i·18-s + ⋯ |
L(s) = 1 | + (−0.743 − 0.429i)2-s + (−0.655 − 0.378i)3-s + (−0.131 − 0.227i)4-s + (−0.990 − 0.139i)5-s + (0.324 + 0.562i)6-s + (−0.950 + 0.548i)7-s + 1.08i·8-s + (−0.213 − 0.369i)9-s + (0.676 + 0.528i)10-s + (−0.0323 + 0.0559i)11-s + 0.198i·12-s + 0.942·14-s + (0.596 + 0.466i)15-s + (0.334 − 0.578i)16-s + (−1.35 + 0.779i)17-s + 0.366i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.795 + 0.605i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.795 + 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.250036 - 0.0842991i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.250036 - 0.0842991i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.21 + 0.311i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.05 + 0.607i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.13 + 0.655i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (2.51 - 1.45i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.107 - 0.185i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (5.56 - 3.21i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.10 - 1.91i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.06 + 2.34i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.35 + 7.54i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 5.59T + 31T^{2} \) |
| 37 | \( 1 + (-1.97 - 1.14i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.52 - 2.64i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.50 + 3.18i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.09iT - 47T^{2} \) |
| 53 | \( 1 + 6.23iT - 53T^{2} \) |
| 59 | \( 1 + (4.63 + 8.02i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.140 - 0.243i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.72 + 3.88i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.04 - 5.26i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 10.2iT - 73T^{2} \) |
| 79 | \( 1 - 14.2T + 79T^{2} \) |
| 83 | \( 1 - 9.52iT - 83T^{2} \) |
| 89 | \( 1 + (2.80 - 4.86i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.6 + 9.02i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12002811137750831302440164527, −9.234365177590976914487209909664, −8.602222888376272907749225543568, −7.75868339718171278041173730468, −6.46749105903807033461258165029, −5.99813204998004691725773432826, −4.75808246979997480413751794783, −3.58427982551577876298284103749, −2.19005631974084675147205596277, −0.52872043866317283647491159351,
0.39356071344400451870826040298, 2.98799257048815582448882406230, 4.01011349236760662114523053673, 4.81155411091492944779462068471, 6.20218967571219308128328603762, 7.09303177679665815262009437667, 7.57941466686852871485512135814, 8.670819025713077453637839229126, 9.295595170877840512904944610548, 10.30634902882935659097337681188