| L(s) = 1 | + (−2.09 − 1.20i)2-s + (0.707 − 1.22i)3-s + (1.91 + 3.31i)4-s − i·5-s + (−2.95 + 1.70i)6-s + (4.18 − 2.41i)7-s − 4.41i·8-s + (0.500 + 0.866i)9-s + (−1.20 + 2.09i)10-s + (−2.95 − 1.70i)11-s + 5.41·12-s − 11.6·14-s + (−1.22 − 0.707i)15-s + (−1.49 + 2.59i)16-s + (0.414 + 0.717i)17-s − 2.41i·18-s + ⋯ |
| L(s) = 1 | + (−1.47 − 0.853i)2-s + (0.408 − 0.707i)3-s + (0.957 + 1.65i)4-s − 0.447i·5-s + (−1.20 + 0.696i)6-s + (1.58 − 0.912i)7-s − 1.56i·8-s + (0.166 + 0.288i)9-s + (−0.381 + 0.661i)10-s + (−0.891 − 0.514i)11-s + 1.56·12-s − 3.11·14-s + (−0.316 − 0.182i)15-s + (−0.374 + 0.649i)16-s + (0.100 + 0.174i)17-s − 0.569i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.890 + 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.890 + 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.225402 - 0.937260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.225402 - 0.937260i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + iT \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (2.09 + 1.20i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.707 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-4.18 + 2.41i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.95 + 1.70i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.414 - 0.717i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.507 - 0.292i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 1.22i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.82 + 4.89i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.75iT - 31T^{2} \) |
| 37 | \( 1 + (-7.34 - 4.24i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.74 + 1.58i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.53 + 9.58i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.82iT - 47T^{2} \) |
| 53 | \( 1 - 2.48T + 53T^{2} \) |
| 59 | \( 1 + (-1.52 + 0.878i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 - 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.73 + i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (10.3 - 5.94i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 8.48iT - 73T^{2} \) |
| 79 | \( 1 + 8.48T + 79T^{2} \) |
| 83 | \( 1 - 3.17iT - 83T^{2} \) |
| 89 | \( 1 + (5.19 + 3i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.63 + 3.82i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12388366341781794506072807564, −8.650378343610156615281229107311, −8.282110461023274592350792168370, −7.74249824961464884603840674970, −7.03981577214759012540601212813, −5.30463358560566370648080221339, −4.19515370526665064897974665810, −2.62548682188398569984388159428, −1.72240361859482729308624123089, −0.796103750884063539129003391681,
1.54099289816793069388234036081, 2.80964011967509439720999739821, 4.55859540323865933357535143955, 5.39545372223772320065199846992, 6.48702111410938815006721105134, 7.52461194068310709884317713748, 8.092270062746130344556634946057, 8.835020636018178689944449090427, 9.487718674683882005381340680295, 10.29307752681707937760663954906