L(s) = 1 | − i·2-s + (1 − i)3-s + 4-s + (2 + i)5-s + (−1 − i)6-s + 2·7-s − 3i·8-s + i·9-s + (1 − 2i)10-s + (1 − i)11-s + (1 − i)12-s − 2i·14-s + (3 − i)15-s − 16-s + (−1 + i)17-s + 18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.577 − 0.577i)3-s + 0.5·4-s + (0.894 + 0.447i)5-s + (−0.408 − 0.408i)6-s + 0.755·7-s − 1.06i·8-s + 0.333i·9-s + (0.316 − 0.632i)10-s + (0.301 − 0.301i)11-s + (0.288 − 0.288i)12-s − 0.534i·14-s + (0.774 − 0.258i)15-s − 0.250·16-s + (−0.242 + 0.242i)17-s + 0.235·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.374 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.27030 - 1.53141i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27030 - 1.53141i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2 - i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + iT - 2T^{2} \) |
| 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 - 2T + 7T^{2} \) |
| 11 | \( 1 + (-1 + i)T - 11iT^{2} \) |
| 17 | \( 1 + (1 - i)T - 17iT^{2} \) |
| 19 | \( 1 + (5 - 5i)T - 19iT^{2} \) |
| 23 | \( 1 + (3 + 3i)T + 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (5 + 5i)T + 31iT^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + (-7 - 7i)T + 41iT^{2} \) |
| 43 | \( 1 + (-1 - i)T + 43iT^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + (-5 + 5i)T - 53iT^{2} \) |
| 59 | \( 1 + (7 + 7i)T + 59iT^{2} \) |
| 61 | \( 1 + 14T + 61T^{2} \) |
| 67 | \( 1 - 4iT - 67T^{2} \) |
| 71 | \( 1 + (1 + i)T + 71iT^{2} \) |
| 73 | \( 1 + 10iT - 73T^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (-5 - 5i)T + 89iT^{2} \) |
| 97 | \( 1 + 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26366995784878187772740868213, −9.316605711841791883502725019831, −8.254437816824936412724093803855, −7.59713622222743386894181907785, −6.51622421284138473719184417440, −5.90801490141797863049618257812, −4.41874111017273617537952364698, −3.16149829751021263068626567708, −2.08085533926447441370692004528, −1.66225632278128860196429221082,
1.71595409120037686296328766557, 2.72530759282490643504847108959, 4.24164419036161304618173546648, 5.09615920577456877081399451180, 6.05853080805161693354660420583, 6.85561182602446446940695513032, 7.82473840026792697154831085425, 8.893044183789676757927861983365, 9.102382348884222298631832276886, 10.29787544650982573590038777625