| L(s) = 1 | + (−0.00933 − 0.0408i)2-s + (2.72 + 1.31i)3-s + (1.80 − 0.867i)4-s + (0.387 + 1.69i)5-s + (0.0282 − 0.123i)6-s + (−1.85 − 0.891i)7-s + (−0.104 − 0.131i)8-s + (3.84 + 4.82i)9-s + (0.0658 − 0.0317i)10-s + (1.15 − 1.44i)11-s + 6.05·12-s + (1.60 − 2.01i)13-s + (−0.0191 + 0.0839i)14-s + (−1.17 + 5.14i)15-s + (2.48 − 3.11i)16-s − 5.23·17-s + ⋯ |
| L(s) = 1 | + (−0.00659 − 0.0289i)2-s + (1.57 + 0.758i)3-s + (0.900 − 0.433i)4-s + (0.173 + 0.759i)5-s + (0.0115 − 0.0505i)6-s + (−0.699 − 0.336i)7-s + (−0.0369 − 0.0463i)8-s + (1.28 + 1.60i)9-s + (0.0208 − 0.0100i)10-s + (0.348 − 0.436i)11-s + 1.74·12-s + (0.445 − 0.558i)13-s + (−0.00512 + 0.0224i)14-s + (−0.303 + 1.32i)15-s + (0.621 − 0.779i)16-s − 1.26·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.825 - 0.564i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.825 - 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.96777 + 0.916993i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.96777 + 0.916993i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 29 | \( 1 \) |
| good | 2 | \( 1 + (0.00933 + 0.0408i)T + (-1.80 + 0.867i)T^{2} \) |
| 3 | \( 1 + (-2.72 - 1.31i)T + (1.87 + 2.34i)T^{2} \) |
| 5 | \( 1 + (-0.387 - 1.69i)T + (-4.50 + 2.16i)T^{2} \) |
| 7 | \( 1 + (1.85 + 0.891i)T + (4.36 + 5.47i)T^{2} \) |
| 11 | \( 1 + (-1.15 + 1.44i)T + (-2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (-1.60 + 2.01i)T + (-2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + 5.23T + 17T^{2} \) |
| 19 | \( 1 + (-0.341 + 0.164i)T + (11.8 - 14.8i)T^{2} \) |
| 23 | \( 1 + (0.807 - 3.53i)T + (-20.7 - 9.97i)T^{2} \) |
| 31 | \( 1 + (-0.526 - 2.30i)T + (-27.9 + 13.4i)T^{2} \) |
| 37 | \( 1 + (-4.09 - 5.13i)T + (-8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 + 9.44T + 41T^{2} \) |
| 43 | \( 1 + (0.221 - 0.970i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (6.33 - 7.94i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (2.20 + 9.68i)T + (-47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 + 6.24T + 59T^{2} \) |
| 61 | \( 1 + (7.19 + 3.46i)T + (38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + (2.58 + 3.23i)T + (-14.9 + 65.3i)T^{2} \) |
| 71 | \( 1 + (1.42 - 1.78i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (2.01 - 8.83i)T + (-65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (6.40 + 8.03i)T + (-17.5 + 77.0i)T^{2} \) |
| 83 | \( 1 + (-14.0 + 6.77i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (2.13 + 9.37i)T + (-80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + (-4.66 + 2.24i)T + (60.4 - 75.8i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17653080986583844797728123456, −9.588921472794176030543910117508, −8.678947487919417112432067217262, −7.80910638459554744043964992640, −6.82561113943511640292322157731, −6.20801606189612670847471601640, −4.70378008539372575479448155463, −3.30172285586814824483800906434, −3.09342447631424536740946314088, −1.83988342686105969313420944315,
1.60711195565389300787116450026, 2.40670789117679634166591192913, 3.37183409862346824791727039409, 4.41720126220986427737700422564, 6.21777947415999834231903769916, 6.79108935366583505186392187739, 7.59706000969755705354750257170, 8.593574018268608896273711602769, 8.932846318030274816105971885649, 9.761506655917497165450140992474