| L(s) = 1 | + (−1.57 + 1.96i)2-s + (0.233 − 1.02i)3-s + (−0.967 − 4.23i)4-s + (−0.913 + 1.14i)5-s + (1.65 + 2.06i)6-s + (−0.918 + 4.02i)7-s + (5.32 + 2.56i)8-s + (1.70 + 0.822i)9-s + (−0.821 − 3.59i)10-s + (−0.453 + 0.218i)11-s − 4.56·12-s + (2.81 − 1.35i)13-s + (−6.48 − 8.12i)14-s + (0.959 + 1.20i)15-s + (−5.58 + 2.68i)16-s − 2.36·17-s + ⋯ |
| L(s) = 1 | + (−1.11 + 1.39i)2-s + (0.134 − 0.591i)3-s + (−0.483 − 2.11i)4-s + (−0.408 + 0.512i)5-s + (0.673 + 0.844i)6-s + (−0.347 + 1.52i)7-s + (1.88 + 0.906i)8-s + (0.569 + 0.274i)9-s + (−0.259 − 1.13i)10-s + (−0.136 + 0.0658i)11-s − 1.31·12-s + (0.780 − 0.375i)13-s + (−1.73 − 2.17i)14-s + (0.247 + 0.310i)15-s + (−1.39 + 0.672i)16-s − 0.573·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.236i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.971 + 0.236i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0674625 - 0.561318i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0674625 - 0.561318i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 29 | \( 1 \) |
| good | 2 | \( 1 + (1.57 - 1.96i)T + (-0.445 - 1.94i)T^{2} \) |
| 3 | \( 1 + (-0.233 + 1.02i)T + (-2.70 - 1.30i)T^{2} \) |
| 5 | \( 1 + (0.913 - 1.14i)T + (-1.11 - 4.87i)T^{2} \) |
| 7 | \( 1 + (0.918 - 4.02i)T + (-6.30 - 3.03i)T^{2} \) |
| 11 | \( 1 + (0.453 - 0.218i)T + (6.85 - 8.60i)T^{2} \) |
| 13 | \( 1 + (-2.81 + 1.35i)T + (8.10 - 10.1i)T^{2} \) |
| 17 | \( 1 + 2.36T + 17T^{2} \) |
| 19 | \( 1 + (0.246 + 1.07i)T + (-17.1 + 8.24i)T^{2} \) |
| 23 | \( 1 + (-2.45 - 3.07i)T + (-5.11 + 22.4i)T^{2} \) |
| 31 | \( 1 + (0.725 - 0.909i)T + (-6.89 - 30.2i)T^{2} \) |
| 37 | \( 1 + (2.76 + 1.33i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + 9.27T + 41T^{2} \) |
| 43 | \( 1 + (-6.54 - 8.20i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (0.196 - 0.0948i)T + (29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (7.48 - 9.38i)T + (-11.7 - 51.6i)T^{2} \) |
| 59 | \( 1 + 9.66T + 59T^{2} \) |
| 61 | \( 1 + (0.202 - 0.885i)T + (-54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + (8.19 + 3.94i)T + (41.7 + 52.3i)T^{2} \) |
| 71 | \( 1 + (3.26 - 1.57i)T + (44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (8.13 + 10.2i)T + (-16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 + (-7.95 - 3.83i)T + (49.2 + 61.7i)T^{2} \) |
| 83 | \( 1 + (0.327 + 1.43i)T + (-74.7 + 36.0i)T^{2} \) |
| 89 | \( 1 + (9.59 - 12.0i)T + (-19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 + (-2.06 - 9.06i)T + (-87.3 + 42.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42299899082708641629856728638, −9.316699816766089197150172838659, −8.873789551017091068222099503531, −7.973066377277751171379854916681, −7.36140248203924791527888922296, −6.52007599157158877875334061772, −5.89786642673186203364950214188, −4.88387143633700777548536369367, −3.02769901229068222560903495869, −1.56311354846897032616428421269,
0.42692115952432464113837509664, 1.55584429084842225709169607377, 3.24038822719498226678506512355, 3.98402940758633316027602874861, 4.57537943650093212911420176567, 6.63872035290086811025853412211, 7.49672435560617206761872619272, 8.517209803755550095602080900636, 9.031470137837806337789610603774, 10.01082581842902499184968955089