L(s) = 1 | + (−0.0990 − 0.433i)2-s + (−1.12 − 0.541i)3-s + (1.62 − 0.781i)4-s + (−0.153 − 0.674i)5-s + (−0.123 + 0.541i)6-s + (−0.321 − 0.154i)7-s + (−1.05 − 1.32i)8-s + (−0.900 − 1.12i)9-s + (−0.277 + 0.133i)10-s + (−3.07 + 3.86i)11-s − 2.24·12-s + (−3.52 + 4.41i)13-s + (−0.0353 + 0.154i)14-s + (−0.192 + 0.841i)15-s + (1.77 − 2.22i)16-s − 4.49·17-s + ⋯ |
L(s) = 1 | + (−0.0700 − 0.306i)2-s + (−0.648 − 0.312i)3-s + (0.811 − 0.390i)4-s + (−0.0688 − 0.301i)5-s + (−0.0504 + 0.220i)6-s + (−0.121 − 0.0585i)7-s + (−0.372 − 0.467i)8-s + (−0.300 − 0.376i)9-s + (−0.0877 + 0.0422i)10-s + (−0.928 + 1.16i)11-s − 0.648·12-s + (−0.977 + 1.22i)13-s + (−0.00944 + 0.0413i)14-s + (−0.0495 + 0.217i)15-s + (0.444 − 0.557i)16-s − 1.08·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.549 - 0.835i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.549 - 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (0.0990 + 0.433i)T + (-1.80 + 0.867i)T^{2} \) |
| 3 | \( 1 + (1.12 + 0.541i)T + (1.87 + 2.34i)T^{2} \) |
| 5 | \( 1 + (0.153 + 0.674i)T + (-4.50 + 2.16i)T^{2} \) |
| 7 | \( 1 + (0.321 + 0.154i)T + (4.36 + 5.47i)T^{2} \) |
| 11 | \( 1 + (3.07 - 3.86i)T + (-2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (3.52 - 4.41i)T + (-2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + 4.49T + 17T^{2} \) |
| 19 | \( 1 + (2.12 - 1.02i)T + (11.8 - 14.8i)T^{2} \) |
| 23 | \( 1 + (0.510 - 2.23i)T + (-20.7 - 9.97i)T^{2} \) |
| 31 | \( 1 + (1.48 + 6.52i)T + (-27.9 + 13.4i)T^{2} \) |
| 37 | \( 1 + (-3.07 - 3.86i)T + (-8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 + 3.10T + 41T^{2} \) |
| 43 | \( 1 + (0.757 - 3.32i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (-4.01 + 5.03i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (-1.04 - 4.57i)T + (-47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + (1.48 + 0.712i)T + (38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + (1.44 + 1.81i)T + (-14.9 + 65.3i)T^{2} \) |
| 71 | \( 1 + (4.57 - 5.73i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (-1.25 + 5.48i)T + (-65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (-2.90 - 3.64i)T + (-17.5 + 77.0i)T^{2} \) |
| 83 | \( 1 + (4.01 - 1.93i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (1.26 + 5.53i)T + (-80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + (0.162 - 0.0783i)T + (60.4 - 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.763510769814015174555959146226, −9.054522080610400386775820133609, −7.69805923740182656976211744643, −6.87129724940281186765405009508, −6.34644650382693262262677516155, −5.21381992959713315114610986057, −4.33452703496785111650132929943, −2.67023145933825030467653736504, −1.76888793264685774785890490230, 0,
2.51105190608855590858058012659, 3.11959387466050747955344128784, 4.79677992717998073763579414885, 5.60690905970408228180591704381, 6.35875962462783455554815520858, 7.33395562060815890973849566754, 8.117819848364533416821365906977, 8.839475225838035643585644853285, 10.34163496763441047826163552816