L(s) = 1 | + (1.41 + 0.0894i)2-s + i·3-s + (1.98 + 0.252i)4-s + 5-s + (−0.0894 + 1.41i)6-s + (−1.64 − 2.07i)7-s + (2.77 + 0.533i)8-s − 9-s + (1.41 + 0.0894i)10-s + 3.15·11-s + (−0.252 + 1.98i)12-s + 2.45·13-s + (−2.13 − 3.07i)14-s + i·15-s + (3.87 + 1.00i)16-s + 2.54i·17-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0632i)2-s + 0.577i·3-s + (0.991 + 0.126i)4-s + 0.447·5-s + (−0.0365 + 0.576i)6-s + (−0.620 − 0.784i)7-s + (0.982 + 0.188i)8-s − 0.333·9-s + (0.446 + 0.0282i)10-s + 0.952·11-s + (−0.0728 + 0.572i)12-s + 0.680·13-s + (−0.569 − 0.821i)14-s + 0.258i·15-s + (0.968 + 0.250i)16-s + 0.616i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 - 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.887 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.10548 + 0.758880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.10548 + 0.758880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 0.0894i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (1.64 + 2.07i)T \) |
good | 11 | \( 1 - 3.15T + 11T^{2} \) |
| 13 | \( 1 - 2.45T + 13T^{2} \) |
| 17 | \( 1 - 2.54iT - 17T^{2} \) |
| 19 | \( 1 - 0.844iT - 19T^{2} \) |
| 23 | \( 1 + 1.41iT - 23T^{2} \) |
| 29 | \( 1 - 4.32iT - 29T^{2} \) |
| 31 | \( 1 + 0.885T + 31T^{2} \) |
| 37 | \( 1 + 6.27iT - 37T^{2} \) |
| 41 | \( 1 - 0.616iT - 41T^{2} \) |
| 43 | \( 1 + 4.29T + 43T^{2} \) |
| 47 | \( 1 + 6.73T + 47T^{2} \) |
| 53 | \( 1 - 6.93iT - 53T^{2} \) |
| 59 | \( 1 + 11.9iT - 59T^{2} \) |
| 61 | \( 1 + 5.56T + 61T^{2} \) |
| 67 | \( 1 + 14.8T + 67T^{2} \) |
| 71 | \( 1 + 3.33iT - 71T^{2} \) |
| 73 | \( 1 - 0.330iT - 73T^{2} \) |
| 79 | \( 1 - 8.66iT - 79T^{2} \) |
| 83 | \( 1 + 17.0iT - 83T^{2} \) |
| 89 | \( 1 + 2.25iT - 89T^{2} \) |
| 97 | \( 1 + 2.37iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49226207082987842088447114535, −9.587276435468338893415354605110, −8.643565134504487734832325611954, −7.44337913797163498788532200041, −6.47091091990447650624012137088, −5.97178836656902785703853229618, −4.76188847751186264304352289422, −3.87217622405506945424544505568, −3.20367159938163688916247612601, −1.57792331053764263845683301432,
1.48031939877408587409655123579, 2.65365807424470644593815046703, 3.58783022548098686981394507103, 4.87813414251406128079550455950, 5.93011550461683221836873598067, 6.39332916052801530172223526455, 7.21652823975941398803451361462, 8.415969673741896766184241558146, 9.335681687861853259839023565542, 10.18794833846853332524742843613