L(s) = 1 | + (−1.21 − 0.722i)2-s + 3-s + (0.955 + 1.75i)4-s + (2.09 − 0.785i)5-s + (−1.21 − 0.722i)6-s + (−2.63 + 0.274i)7-s + (0.108 − 2.82i)8-s + 9-s + (−3.11 − 0.557i)10-s + 1.22·11-s + (0.955 + 1.75i)12-s − 1.25i·13-s + (3.39 + 1.56i)14-s + (2.09 − 0.785i)15-s + (−2.17 + 3.35i)16-s + 3.68·17-s + ⋯ |
L(s) = 1 | + (−0.859 − 0.511i)2-s + 0.577·3-s + (0.477 + 0.878i)4-s + (0.936 − 0.351i)5-s + (−0.496 − 0.295i)6-s + (−0.994 + 0.103i)7-s + (0.0385 − 0.999i)8-s + 0.333·9-s + (−0.984 − 0.176i)10-s + 0.369·11-s + (0.275 + 0.507i)12-s − 0.349i·13-s + (0.907 + 0.419i)14-s + (0.540 − 0.202i)15-s + (−0.543 + 0.839i)16-s + 0.893·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.411 + 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.411 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.16649 - 0.752822i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16649 - 0.752822i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.21 + 0.722i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-2.09 + 0.785i)T \) |
| 7 | \( 1 + (2.63 - 0.274i)T \) |
good | 11 | \( 1 - 1.22T + 11T^{2} \) |
| 13 | \( 1 + 1.25iT - 13T^{2} \) |
| 17 | \( 1 - 3.68T + 17T^{2} \) |
| 19 | \( 1 + 6.93iT - 19T^{2} \) |
| 23 | \( 1 + 2.42T + 23T^{2} \) |
| 29 | \( 1 + 4.12iT - 29T^{2} \) |
| 31 | \( 1 - 2.80T + 31T^{2} \) |
| 37 | \( 1 - 6.71T + 37T^{2} \) |
| 41 | \( 1 - 11.6iT - 41T^{2} \) |
| 43 | \( 1 + 6.00iT - 43T^{2} \) |
| 47 | \( 1 - 1.84iT - 47T^{2} \) |
| 53 | \( 1 - 10.1T + 53T^{2} \) |
| 59 | \( 1 - 5.67iT - 59T^{2} \) |
| 61 | \( 1 + 6.48T + 61T^{2} \) |
| 67 | \( 1 - 5.15iT - 67T^{2} \) |
| 71 | \( 1 + 9.54iT - 71T^{2} \) |
| 73 | \( 1 + 1.61T + 73T^{2} \) |
| 79 | \( 1 + 8.33iT - 79T^{2} \) |
| 83 | \( 1 + 0.371T + 83T^{2} \) |
| 89 | \( 1 + 4.80iT - 89T^{2} \) |
| 97 | \( 1 + 11.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.839890807075733498475124416693, −9.345873751562849823400832856473, −8.662175942173805903287446980561, −7.69456764682706706544864676252, −6.71345674158713417161616491552, −5.91178403399774617207521860103, −4.40367067283718698864688360709, −3.11870672644897660731858060436, −2.40477977403532775280533899294, −0.935271280229053335043946328275,
1.41149450823956721360034190025, 2.59893576480408210327425323467, 3.79261986801330025191389226156, 5.49404674352730302157204714845, 6.19791643160235414671279299515, 6.95122379042370882378929121262, 7.82962361183760552845518737750, 8.796725793562617541456517775957, 9.582372800742137620106337622319, 10.01887670385087315738025422295