L(s) = 1 | + (1.38 + 0.273i)2-s + 3-s + (1.85 + 0.758i)4-s + (0.840 − 2.07i)5-s + (1.38 + 0.273i)6-s + (2.31 + 1.27i)7-s + (2.36 + 1.55i)8-s + 9-s + (1.73 − 2.64i)10-s − 1.15·11-s + (1.85 + 0.758i)12-s + 0.698i·13-s + (2.87 + 2.39i)14-s + (0.840 − 2.07i)15-s + (2.84 + 2.80i)16-s − 6.87·17-s + ⋯ |
L(s) = 1 | + (0.981 + 0.193i)2-s + 0.577·3-s + (0.925 + 0.379i)4-s + (0.376 − 0.926i)5-s + (0.566 + 0.111i)6-s + (0.876 + 0.480i)7-s + (0.834 + 0.551i)8-s + 0.333·9-s + (0.548 − 0.836i)10-s − 0.349·11-s + (0.534 + 0.219i)12-s + 0.193i·13-s + (0.767 + 0.641i)14-s + (0.217 − 0.534i)15-s + (0.712 + 0.702i)16-s − 1.66·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.83094 + 0.191525i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.83094 + 0.191525i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 - 0.273i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.840 + 2.07i)T \) |
| 7 | \( 1 + (-2.31 - 1.27i)T \) |
good | 11 | \( 1 + 1.15T + 11T^{2} \) |
| 13 | \( 1 - 0.698iT - 13T^{2} \) |
| 17 | \( 1 + 6.87T + 17T^{2} \) |
| 19 | \( 1 + 4.94iT - 19T^{2} \) |
| 23 | \( 1 + 5.30T + 23T^{2} \) |
| 29 | \( 1 - 10.0iT - 29T^{2} \) |
| 31 | \( 1 + 0.109T + 31T^{2} \) |
| 37 | \( 1 - 4.30T + 37T^{2} \) |
| 41 | \( 1 + 2.58iT - 41T^{2} \) |
| 43 | \( 1 + 7.55iT - 43T^{2} \) |
| 47 | \( 1 + 3.53iT - 47T^{2} \) |
| 53 | \( 1 + 1.70T + 53T^{2} \) |
| 59 | \( 1 - 12.3iT - 59T^{2} \) |
| 61 | \( 1 - 4.88T + 61T^{2} \) |
| 67 | \( 1 + 8.12iT - 67T^{2} \) |
| 71 | \( 1 - 5.80iT - 71T^{2} \) |
| 73 | \( 1 + 3.86T + 73T^{2} \) |
| 79 | \( 1 + 6.30iT - 79T^{2} \) |
| 83 | \( 1 + 12.7T + 83T^{2} \) |
| 89 | \( 1 + 0.841iT - 89T^{2} \) |
| 97 | \( 1 + 0.0488T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36490131644828480162726111679, −8.944502271905850676816528163627, −8.665662036550675569488047650715, −7.61694266694347634813117432827, −6.68668467809253319603139561568, −5.55892653059889190034114295742, −4.81244221124210708902796156168, −4.12091108110476890244935416615, −2.57466053411741518419984293654, −1.78717203892831401564312569180,
1.84691977229868542632564236925, 2.60146873091824569086866462797, 3.86258406022660435192636942132, 4.55086596529255090016660040406, 5.85935768300977345045771810188, 6.55923438807261302343873151901, 7.62735159354098999294475391330, 8.147229505805804238555791440042, 9.721387884593579409685344119183, 10.27347053153891935953884412088