L(s) = 1 | + (1.31 − 0.512i)2-s + 3-s + (1.47 − 1.35i)4-s + (1.36 − 1.77i)5-s + (1.31 − 0.512i)6-s + (−2.64 + 0.0973i)7-s + (1.24 − 2.53i)8-s + 9-s + (0.891 − 3.03i)10-s + 5.35·11-s + (1.47 − 1.35i)12-s + 6.03i·13-s + (−3.43 + 1.48i)14-s + (1.36 − 1.77i)15-s + (0.343 − 3.98i)16-s − 3.08·17-s + ⋯ |
L(s) = 1 | + (0.931 − 0.362i)2-s + 0.577·3-s + (0.736 − 0.676i)4-s + (0.610 − 0.791i)5-s + (0.538 − 0.209i)6-s + (−0.999 + 0.0367i)7-s + (0.441 − 0.897i)8-s + 0.333·9-s + (0.281 − 0.959i)10-s + 1.61·11-s + (0.425 − 0.390i)12-s + 1.67i·13-s + (−0.917 + 0.396i)14-s + (0.352 − 0.457i)15-s + (0.0858 − 0.996i)16-s − 0.747·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.473 + 0.880i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.473 + 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.01633 - 1.80287i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.01633 - 1.80287i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.31 + 0.512i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-1.36 + 1.77i)T \) |
| 7 | \( 1 + (2.64 - 0.0973i)T \) |
good | 11 | \( 1 - 5.35T + 11T^{2} \) |
| 13 | \( 1 - 6.03iT - 13T^{2} \) |
| 17 | \( 1 + 3.08T + 17T^{2} \) |
| 19 | \( 1 + 0.109iT - 19T^{2} \) |
| 23 | \( 1 - 2.14T + 23T^{2} \) |
| 29 | \( 1 + 7.09iT - 29T^{2} \) |
| 31 | \( 1 + 10.1T + 31T^{2} \) |
| 37 | \( 1 + 4.52T + 37T^{2} \) |
| 41 | \( 1 + 4.77iT - 41T^{2} \) |
| 43 | \( 1 - 6.25iT - 43T^{2} \) |
| 47 | \( 1 - 4.11iT - 47T^{2} \) |
| 53 | \( 1 + 3.67T + 53T^{2} \) |
| 59 | \( 1 - 12.0iT - 59T^{2} \) |
| 61 | \( 1 - 8.16T + 61T^{2} \) |
| 67 | \( 1 - 7.52iT - 67T^{2} \) |
| 71 | \( 1 - 11.8iT - 71T^{2} \) |
| 73 | \( 1 - 3.38T + 73T^{2} \) |
| 79 | \( 1 - 13.9iT - 79T^{2} \) |
| 83 | \( 1 - 3.39T + 83T^{2} \) |
| 89 | \( 1 - 10.4iT - 89T^{2} \) |
| 97 | \( 1 + 6.53T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.776772758695135111185439191598, −9.352826887041471475845632682859, −8.780966909666030833065281894558, −7.01348058953145200167829101549, −6.57178293023714481732166449112, −5.63650996797990192888164277588, −4.26994497808735394606381319856, −3.89955776002573291262437459455, −2.41467833993169844564688518751, −1.44642266728296568682168101152,
1.97590624576057310857044898179, 3.37552162962545268237528797341, 3.47847538495441960746195692114, 5.12183888150493958455772136346, 6.11624000236184279843753182877, 6.79072393941312608334749876830, 7.40032920689508941567835208922, 8.699402614205786302092904809119, 9.419637975880277954921891386850, 10.47100740520948188878154451129