L(s) = 1 | + (0.752 + 1.19i)2-s + 3-s + (−0.867 + 1.80i)4-s + (−1.64 + 1.51i)5-s + (0.752 + 1.19i)6-s + (−2.63 − 0.259i)7-s + (−2.81 + 0.318i)8-s + 9-s + (−3.05 − 0.833i)10-s − 3.15·11-s + (−0.867 + 1.80i)12-s − 2.42i·13-s + (−1.67 − 3.34i)14-s + (−1.64 + 1.51i)15-s + (−2.49 − 3.12i)16-s + 2.13·17-s + ⋯ |
L(s) = 1 | + (0.532 + 0.846i)2-s + 0.577·3-s + (−0.433 + 0.901i)4-s + (−0.736 + 0.676i)5-s + (0.307 + 0.488i)6-s + (−0.995 − 0.0980i)7-s + (−0.993 + 0.112i)8-s + 0.333·9-s + (−0.964 − 0.263i)10-s − 0.952·11-s + (−0.250 + 0.520i)12-s − 0.673i·13-s + (−0.446 − 0.894i)14-s + (−0.425 + 0.390i)15-s + (−0.623 − 0.781i)16-s + 0.517·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.726 + 0.686i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.726 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.255678 - 0.642637i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.255678 - 0.642637i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.752 - 1.19i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (1.64 - 1.51i)T \) |
| 7 | \( 1 + (2.63 + 0.259i)T \) |
good | 11 | \( 1 + 3.15T + 11T^{2} \) |
| 13 | \( 1 + 2.42iT - 13T^{2} \) |
| 17 | \( 1 - 2.13T + 17T^{2} \) |
| 19 | \( 1 - 2.84iT - 19T^{2} \) |
| 23 | \( 1 + 7.13T + 23T^{2} \) |
| 29 | \( 1 - 4.57iT - 29T^{2} \) |
| 31 | \( 1 - 3.50T + 31T^{2} \) |
| 37 | \( 1 + 7.05T + 37T^{2} \) |
| 41 | \( 1 + 2.43iT - 41T^{2} \) |
| 43 | \( 1 - 5.07iT - 43T^{2} \) |
| 47 | \( 1 - 12.8iT - 47T^{2} \) |
| 53 | \( 1 + 4.91T + 53T^{2} \) |
| 59 | \( 1 - 2.93iT - 59T^{2} \) |
| 61 | \( 1 - 1.17T + 61T^{2} \) |
| 67 | \( 1 - 5.88iT - 67T^{2} \) |
| 71 | \( 1 - 5.30iT - 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 + 4.53iT - 79T^{2} \) |
| 83 | \( 1 + 14.0T + 83T^{2} \) |
| 89 | \( 1 - 4.75iT - 89T^{2} \) |
| 97 | \( 1 - 10.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46021533806274292805681390740, −9.939207501947572389351345058267, −8.719857101197772572365844889828, −7.87308629934598267513513257584, −7.46313995355028965952508621787, −6.43843388374315474725821702184, −5.63431124935279209359917254450, −4.32557231889215055249189064834, −3.38349055922607800158665461392, −2.80177009647278137886383118218,
0.24806589507998957627831852386, 2.05042035287656365967656520647, 3.19321783704133084831310979431, 3.99123465014948890510206967138, 4.92182176725203059315358556741, 5.96155917717426019798940727006, 7.11308457755859246173571850043, 8.224603390237631692448901326543, 8.948710545450627241663122543451, 9.834114345486565224814601764388