L(s) = 1 | + (0.716 + 1.21i)2-s + 3-s + (−0.973 + 1.74i)4-s + (−0.151 + 2.23i)5-s + (0.716 + 1.21i)6-s + (2.00 − 1.72i)7-s + (−2.82 + 0.0635i)8-s + 9-s + (−2.82 + 1.41i)10-s + 2.25·11-s + (−0.973 + 1.74i)12-s + 6.09i·13-s + (3.54 + 1.20i)14-s + (−0.151 + 2.23i)15-s + (−2.10 − 3.40i)16-s − 2.64·17-s + ⋯ |
L(s) = 1 | + (0.506 + 0.862i)2-s + 0.577·3-s + (−0.486 + 0.873i)4-s + (−0.0678 + 0.997i)5-s + (0.292 + 0.497i)6-s + (0.756 − 0.653i)7-s + (−0.999 + 0.0224i)8-s + 0.333·9-s + (−0.894 + 0.446i)10-s + 0.680·11-s + (−0.281 + 0.504i)12-s + 1.68i·13-s + (0.946 + 0.321i)14-s + (−0.0391 + 0.576i)15-s + (−0.525 − 0.850i)16-s − 0.641·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.618 - 0.785i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.618 - 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05274 + 2.16808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05274 + 2.16808i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.716 - 1.21i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.151 - 2.23i)T \) |
| 7 | \( 1 + (-2.00 + 1.72i)T \) |
good | 11 | \( 1 - 2.25T + 11T^{2} \) |
| 13 | \( 1 - 6.09iT - 13T^{2} \) |
| 17 | \( 1 + 2.64T + 17T^{2} \) |
| 19 | \( 1 + 1.31iT - 19T^{2} \) |
| 23 | \( 1 - 6.62T + 23T^{2} \) |
| 29 | \( 1 - 6.44iT - 29T^{2} \) |
| 31 | \( 1 + 6.67T + 31T^{2} \) |
| 37 | \( 1 + 2.30T + 37T^{2} \) |
| 41 | \( 1 + 5.50iT - 41T^{2} \) |
| 43 | \( 1 + 1.26iT - 43T^{2} \) |
| 47 | \( 1 + 0.599iT - 47T^{2} \) |
| 53 | \( 1 - 10.4T + 53T^{2} \) |
| 59 | \( 1 + 0.847iT - 59T^{2} \) |
| 61 | \( 1 + 11.7T + 61T^{2} \) |
| 67 | \( 1 + 14.2iT - 67T^{2} \) |
| 71 | \( 1 - 3.94iT - 71T^{2} \) |
| 73 | \( 1 - 8.34T + 73T^{2} \) |
| 79 | \( 1 + 0.674iT - 79T^{2} \) |
| 83 | \( 1 - 7.23T + 83T^{2} \) |
| 89 | \( 1 - 5.66iT - 89T^{2} \) |
| 97 | \( 1 - 11.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64099477420817599432063605519, −9.154076467211295617893464026006, −8.920131810079930759465152243982, −7.61521173123535262469638728198, −6.98043497007197008971843124930, −6.58691255184129233063217710277, −5.07765833908889876876566396370, −4.15224197236277951145832139299, −3.42956496403389468422242031564, −1.99859249517482144320764669542,
1.02211794053103778064429880822, 2.19484313529399639146666036629, 3.35252614829711586169746712084, 4.43650027176564038095924093222, 5.21851559035348439052310863736, 6.00544638548431309182229748097, 7.59643824630069933051001537519, 8.565489090368646366278815916141, 9.002348515268535811223413279858, 9.876702145803033026441702745449