L(s) = 1 | + (0.355 − 1.36i)2-s + 3-s + (−1.74 − 0.974i)4-s + (−1.14 + 1.92i)5-s + (0.355 − 1.36i)6-s + (1.89 + 1.84i)7-s + (−1.95 + 2.04i)8-s + 9-s + (2.22 + 2.24i)10-s − 6.38·11-s + (−1.74 − 0.974i)12-s + 1.62i·13-s + (3.20 − 1.93i)14-s + (−1.14 + 1.92i)15-s + (2.10 + 3.40i)16-s − 3.66·17-s + ⋯ |
L(s) = 1 | + (0.251 − 0.967i)2-s + 0.577·3-s + (−0.873 − 0.487i)4-s + (−0.511 + 0.859i)5-s + (0.145 − 0.558i)6-s + (0.716 + 0.697i)7-s + (−0.691 + 0.722i)8-s + 0.333·9-s + (0.702 + 0.711i)10-s − 1.92·11-s + (−0.504 − 0.281i)12-s + 0.449i·13-s + (0.855 − 0.517i)14-s + (−0.295 + 0.496i)15-s + (0.525 + 0.850i)16-s − 0.889·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.480 - 0.876i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.480 - 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.966248 + 0.572125i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.966248 + 0.572125i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.355 + 1.36i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (1.14 - 1.92i)T \) |
| 7 | \( 1 + (-1.89 - 1.84i)T \) |
good | 11 | \( 1 + 6.38T + 11T^{2} \) |
| 13 | \( 1 - 1.62iT - 13T^{2} \) |
| 17 | \( 1 + 3.66T + 17T^{2} \) |
| 19 | \( 1 - 5.64iT - 19T^{2} \) |
| 23 | \( 1 + 0.543T + 23T^{2} \) |
| 29 | \( 1 - 6.72iT - 29T^{2} \) |
| 31 | \( 1 - 4.92T + 31T^{2} \) |
| 37 | \( 1 + 8.14T + 37T^{2} \) |
| 41 | \( 1 + 2.75iT - 41T^{2} \) |
| 43 | \( 1 + 0.448iT - 43T^{2} \) |
| 47 | \( 1 - 0.873iT - 47T^{2} \) |
| 53 | \( 1 - 9.55T + 53T^{2} \) |
| 59 | \( 1 + 2.84iT - 59T^{2} \) |
| 61 | \( 1 - 7.86T + 61T^{2} \) |
| 67 | \( 1 + 3.43iT - 67T^{2} \) |
| 71 | \( 1 - 5.58iT - 71T^{2} \) |
| 73 | \( 1 - 7.80T + 73T^{2} \) |
| 79 | \( 1 - 1.92iT - 79T^{2} \) |
| 83 | \( 1 - 7.30T + 83T^{2} \) |
| 89 | \( 1 + 3.48iT - 89T^{2} \) |
| 97 | \( 1 + 16.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58027050640711178506467165180, −9.738534019535998231902574714269, −8.486415965395889195044269681336, −8.196625254663454701819270253244, −7.04649657085324126412286144888, −5.67336534853008994413832424535, −4.81958796137333874567639451625, −3.72093507601378753112487038722, −2.70472285279820254220146498358, −2.00283324422655736149279744161,
0.45263467222329508628555399569, 2.60629605088839914764782304988, 3.99144493791082803735192957419, 4.80431468115769805071554693765, 5.35800735902905403772948057202, 6.86060459241063420844990829805, 7.69686713585880114701305553693, 8.179724440613199297117007688574, 8.783433684821288975272048419651, 9.883487313991184508042552209683