L(s) = 1 | + (−0.716 + 1.21i)2-s + 3-s + (−0.973 − 1.74i)4-s + (0.151 − 2.23i)5-s + (−0.716 + 1.21i)6-s + (−2.00 + 1.72i)7-s + (2.82 + 0.0635i)8-s + 9-s + (2.61 + 1.78i)10-s + 2.25·11-s + (−0.973 − 1.74i)12-s − 6.09i·13-s + (−0.673 − 3.68i)14-s + (0.151 − 2.23i)15-s + (−2.10 + 3.40i)16-s − 2.64·17-s + ⋯ |
L(s) = 1 | + (−0.506 + 0.862i)2-s + 0.577·3-s + (−0.486 − 0.873i)4-s + (0.0678 − 0.997i)5-s + (−0.292 + 0.497i)6-s + (−0.756 + 0.653i)7-s + (0.999 + 0.0224i)8-s + 0.333·9-s + (0.825 + 0.563i)10-s + 0.680·11-s + (−0.281 − 0.504i)12-s − 1.68i·13-s + (−0.180 − 0.983i)14-s + (0.0391 − 0.576i)15-s + (−0.525 + 0.850i)16-s − 0.641·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 + 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.582 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.935085 - 0.480285i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.935085 - 0.480285i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.716 - 1.21i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.151 + 2.23i)T \) |
| 7 | \( 1 + (2.00 - 1.72i)T \) |
good | 11 | \( 1 - 2.25T + 11T^{2} \) |
| 13 | \( 1 + 6.09iT - 13T^{2} \) |
| 17 | \( 1 + 2.64T + 17T^{2} \) |
| 19 | \( 1 + 1.31iT - 19T^{2} \) |
| 23 | \( 1 + 6.62T + 23T^{2} \) |
| 29 | \( 1 + 6.44iT - 29T^{2} \) |
| 31 | \( 1 - 6.67T + 31T^{2} \) |
| 37 | \( 1 - 2.30T + 37T^{2} \) |
| 41 | \( 1 + 5.50iT - 41T^{2} \) |
| 43 | \( 1 + 1.26iT - 43T^{2} \) |
| 47 | \( 1 - 0.599iT - 47T^{2} \) |
| 53 | \( 1 + 10.4T + 53T^{2} \) |
| 59 | \( 1 + 0.847iT - 59T^{2} \) |
| 61 | \( 1 - 11.7T + 61T^{2} \) |
| 67 | \( 1 + 14.2iT - 67T^{2} \) |
| 71 | \( 1 + 3.94iT - 71T^{2} \) |
| 73 | \( 1 - 8.34T + 73T^{2} \) |
| 79 | \( 1 - 0.674iT - 79T^{2} \) |
| 83 | \( 1 - 7.23T + 83T^{2} \) |
| 89 | \( 1 - 5.66iT - 89T^{2} \) |
| 97 | \( 1 - 11.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.658842946926921546175235111636, −9.209656346256166488059906893149, −8.234811129318424286833235399535, −7.930958823999348967580294191556, −6.51895712274173816480652415415, −5.87778002781443994163252115460, −4.89961492367360404070322771537, −3.79549818043147948450580652641, −2.23086483810926900472357909413, −0.57229991110130829338980565321,
1.65414982966384557420475445686, 2.73957845892599905862682530280, 3.78093085014017397054656823795, 4.32984302075907946228021064129, 6.46567090388507264690689401552, 6.89465347381389679031927144171, 7.905764857007975249253401113955, 8.890881385265117834477722589732, 9.699176497546518663229556321687, 10.10088198439171664294282560332