L(s) = 1 | + (−0.911 − 1.08i)2-s + 3-s + (−0.339 + 1.97i)4-s + (−2.20 − 0.349i)5-s + (−0.911 − 1.08i)6-s + (0.795 + 2.52i)7-s + (2.44 − 1.42i)8-s + 9-s + (1.63 + 2.70i)10-s − 1.30·11-s + (−0.339 + 1.97i)12-s + 1.98i·13-s + (2.00 − 3.15i)14-s + (−2.20 − 0.349i)15-s + (−3.76 − 1.33i)16-s − 5.61·17-s + ⋯ |
L(s) = 1 | + (−0.644 − 0.764i)2-s + 0.577·3-s + (−0.169 + 0.985i)4-s + (−0.987 − 0.156i)5-s + (−0.371 − 0.441i)6-s + (0.300 + 0.953i)7-s + (0.863 − 0.505i)8-s + 0.333·9-s + (0.516 + 0.856i)10-s − 0.392·11-s + (−0.0980 + 0.568i)12-s + 0.549i·13-s + (0.535 − 0.844i)14-s + (−0.570 − 0.0903i)15-s + (−0.942 − 0.334i)16-s − 1.36·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.627 - 0.778i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.627 - 0.778i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0960990 + 0.200755i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0960990 + 0.200755i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.911 + 1.08i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (2.20 + 0.349i)T \) |
| 7 | \( 1 + (-0.795 - 2.52i)T \) |
good | 11 | \( 1 + 1.30T + 11T^{2} \) |
| 13 | \( 1 - 1.98iT - 13T^{2} \) |
| 17 | \( 1 + 5.61T + 17T^{2} \) |
| 19 | \( 1 + 3.69iT - 19T^{2} \) |
| 23 | \( 1 + 7.46T + 23T^{2} \) |
| 29 | \( 1 + 6.71iT - 29T^{2} \) |
| 31 | \( 1 + 10.3T + 31T^{2} \) |
| 37 | \( 1 - 1.94T + 37T^{2} \) |
| 41 | \( 1 - 2.70iT - 41T^{2} \) |
| 43 | \( 1 - 5.78iT - 43T^{2} \) |
| 47 | \( 1 - 9.66iT - 47T^{2} \) |
| 53 | \( 1 + 1.66T + 53T^{2} \) |
| 59 | \( 1 - 3.59iT - 59T^{2} \) |
| 61 | \( 1 + 5.08T + 61T^{2} \) |
| 67 | \( 1 + 2.27iT - 67T^{2} \) |
| 71 | \( 1 + 7.30iT - 71T^{2} \) |
| 73 | \( 1 + 8.44T + 73T^{2} \) |
| 79 | \( 1 + 7.73iT - 79T^{2} \) |
| 83 | \( 1 - 6.73T + 83T^{2} \) |
| 89 | \( 1 - 2.02iT - 89T^{2} \) |
| 97 | \( 1 + 1.76T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60686491259535331030875670913, −9.276140808250217715944163752115, −9.058603153325635418144829929298, −8.041714114064515763443600106854, −7.61686522466949633858902203350, −6.37755080687038536340342513631, −4.72318017136274671244580392186, −4.03792899275206624559536033723, −2.80223840266936160584959350903, −1.93017499452181332739452117892,
0.11950415412833510188917748385, 1.87694317187425773524397024287, 3.62649042442807956232695209347, 4.42248550395726387508702325082, 5.57928123929738745315829368645, 6.91760790254534910631406623033, 7.38578871827236252056641360568, 8.197022279380618908935958251824, 8.697360075302802104375006042678, 9.864575491220822169575854298152