L(s) = 1 | + (1.70 − 0.301i)3-s + (−2.04 − 0.902i)5-s + (−1.30 + 2.30i)7-s + (2.81 − 1.02i)9-s + 5.71i·11-s + 3.76·13-s + (−3.76 − 0.922i)15-s + 3.22i·17-s + 0.786i·19-s + (−1.52 + 4.32i)21-s + 1.52·23-s + (3.37 + 3.69i)25-s + (4.49 − 2.60i)27-s − 6.77i·29-s − 1.56i·31-s + ⋯ |
L(s) = 1 | + (0.984 − 0.174i)3-s + (−0.914 − 0.403i)5-s + (−0.492 + 0.870i)7-s + (0.939 − 0.343i)9-s + 1.72i·11-s + 1.04·13-s + (−0.971 − 0.238i)15-s + 0.783i·17-s + 0.180i·19-s + (−0.333 + 0.942i)21-s + 0.318·23-s + (0.674 + 0.738i)25-s + (0.865 − 0.501i)27-s − 1.25i·29-s − 0.281i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.685 - 0.728i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.685 - 0.728i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64099 + 0.709063i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64099 + 0.709063i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.70 + 0.301i)T \) |
| 5 | \( 1 + (2.04 + 0.902i)T \) |
| 7 | \( 1 + (1.30 - 2.30i)T \) |
good | 11 | \( 1 - 5.71iT - 11T^{2} \) |
| 13 | \( 1 - 3.76T + 13T^{2} \) |
| 17 | \( 1 - 3.22iT - 17T^{2} \) |
| 19 | \( 1 - 0.786iT - 19T^{2} \) |
| 23 | \( 1 - 1.52T + 23T^{2} \) |
| 29 | \( 1 + 6.77iT - 29T^{2} \) |
| 31 | \( 1 + 1.56iT - 31T^{2} \) |
| 37 | \( 1 - 8.83iT - 37T^{2} \) |
| 41 | \( 1 - 6.65T + 41T^{2} \) |
| 43 | \( 1 - 8.85iT - 43T^{2} \) |
| 47 | \( 1 - 1.75iT - 47T^{2} \) |
| 53 | \( 1 - 0.616T + 53T^{2} \) |
| 59 | \( 1 - 6.38T + 59T^{2} \) |
| 61 | \( 1 + 14.4iT - 61T^{2} \) |
| 67 | \( 1 + 6.26iT - 67T^{2} \) |
| 71 | \( 1 - 5.09iT - 71T^{2} \) |
| 73 | \( 1 + 12.5T + 73T^{2} \) |
| 79 | \( 1 + 12.8T + 79T^{2} \) |
| 83 | \( 1 - 10.5iT - 83T^{2} \) |
| 89 | \( 1 + 15.6T + 89T^{2} \) |
| 97 | \( 1 - 7.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.960080136373969093506936333769, −9.437010125201940634946787923022, −8.473104237310004353634187901452, −7.996698648093624194986904824536, −7.03280986694796293174608877212, −6.10884349694298131375899549059, −4.64619331079073507695701658759, −3.91850299732674291607434993478, −2.81589669317432353458686954693, −1.58289126492988236099634042266,
0.857080206798748984401771688319, 2.93253448571495920401786882179, 3.52168932778394058603060687013, 4.26275149698278660142847298156, 5.76320898063921298720067939992, 7.00862475722078021441221981483, 7.45089586032138453636327402746, 8.690329038762788676150661063659, 8.820057648290523594647839769958, 10.23076772998305410472686052134