L(s) = 1 | + (1.37 − 1.04i)3-s + (1.84 − 1.26i)5-s + (−2.63 + 0.269i)7-s + (0.801 − 2.89i)9-s − 3.01i·11-s − 4.39·13-s + (1.20 − 3.67i)15-s + 2.71i·17-s − 8.23i·19-s + (−3.34 + 3.13i)21-s + 3.81·23-s + (1.77 − 4.67i)25-s + (−1.92 − 4.82i)27-s + 1.17i·29-s + 1.73i·31-s + ⋯ |
L(s) = 1 | + (0.796 − 0.605i)3-s + (0.823 − 0.567i)5-s + (−0.994 + 0.101i)7-s + (0.267 − 0.963i)9-s − 0.908i·11-s − 1.21·13-s + (0.311 − 0.950i)15-s + 0.657i·17-s − 1.88i·19-s + (−0.730 + 0.683i)21-s + 0.796·23-s + (0.355 − 0.934i)25-s + (−0.370 − 0.928i)27-s + 0.217i·29-s + 0.311i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.213 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.213 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.18599 - 1.47314i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18599 - 1.47314i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.37 + 1.04i)T \) |
| 5 | \( 1 + (-1.84 + 1.26i)T \) |
| 7 | \( 1 + (2.63 - 0.269i)T \) |
good | 11 | \( 1 + 3.01iT - 11T^{2} \) |
| 13 | \( 1 + 4.39T + 13T^{2} \) |
| 17 | \( 1 - 2.71iT - 17T^{2} \) |
| 19 | \( 1 + 8.23iT - 19T^{2} \) |
| 23 | \( 1 - 3.81T + 23T^{2} \) |
| 29 | \( 1 - 1.17iT - 29T^{2} \) |
| 31 | \( 1 - 1.73iT - 31T^{2} \) |
| 37 | \( 1 - 4.60iT - 37T^{2} \) |
| 41 | \( 1 - 10.6T + 41T^{2} \) |
| 43 | \( 1 - 9.18iT - 43T^{2} \) |
| 47 | \( 1 + 12.0iT - 47T^{2} \) |
| 53 | \( 1 - 7.14T + 53T^{2} \) |
| 59 | \( 1 + 9.11T + 59T^{2} \) |
| 61 | \( 1 - 13.5iT - 61T^{2} \) |
| 67 | \( 1 - 0.494iT - 67T^{2} \) |
| 71 | \( 1 - 5.15iT - 71T^{2} \) |
| 73 | \( 1 + 4.76T + 73T^{2} \) |
| 79 | \( 1 - 12.1T + 79T^{2} \) |
| 83 | \( 1 + 8.16iT - 83T^{2} \) |
| 89 | \( 1 - 2.26T + 89T^{2} \) |
| 97 | \( 1 + 2.92T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.661417799762890822294443886559, −9.092074477837289699519229654395, −8.518660494700331767212456006848, −7.28982816662994043329994663981, −6.59359781968327890169448173957, −5.71126425873743344326765421190, −4.55552703832644490698480708569, −3.09574243165483399279777073643, −2.42635070259941655298636365739, −0.825742825695920753559121112517,
2.08600194756549453750740373306, 2.89483526738255534116927098326, 3.94821817510318130962426628111, 5.07625783921144595554853709869, 6.07863752521681530303221651652, 7.20227011107980866181140383757, 7.71086881569901170449006280733, 9.252218720278030792028327249087, 9.538197499332031240733805299425, 10.18967381422532606489085934093