Properties

Label 2-840-21.20-c1-0-21
Degree $2$
Conductor $840$
Sign $0.990 + 0.134i$
Analytic cond. $6.70743$
Root an. cond. $2.58987$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.72 + 0.0964i)3-s + 5-s + (0.208 − 2.63i)7-s + (2.98 + 0.333i)9-s + 1.71i·11-s + 3.11i·13-s + (1.72 + 0.0964i)15-s + 3.59·17-s + 1.04i·19-s + (0.615 − 4.54i)21-s − 0.587i·23-s + 25-s + (5.12 + 0.864i)27-s − 4.47i·29-s − 8.51i·31-s + ⋯
L(s)  = 1  + (0.998 + 0.0556i)3-s + 0.447·5-s + (0.0789 − 0.996i)7-s + (0.993 + 0.111i)9-s + 0.516i·11-s + 0.863i·13-s + (0.446 + 0.0249i)15-s + 0.871·17-s + 0.239i·19-s + (0.134 − 0.990i)21-s − 0.122i·23-s + 0.200·25-s + (0.986 + 0.166i)27-s − 0.830i·29-s − 1.52i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.134i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 + 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.990 + 0.134i$
Analytic conductor: \(6.70743\)
Root analytic conductor: \(2.58987\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{840} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 840,\ (\ :1/2),\ 0.990 + 0.134i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.46919 - 0.166582i\)
\(L(\frac12)\) \(\approx\) \(2.46919 - 0.166582i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.72 - 0.0964i)T \)
5 \( 1 - T \)
7 \( 1 + (-0.208 + 2.63i)T \)
good11 \( 1 - 1.71iT - 11T^{2} \)
13 \( 1 - 3.11iT - 13T^{2} \)
17 \( 1 - 3.59T + 17T^{2} \)
19 \( 1 - 1.04iT - 19T^{2} \)
23 \( 1 + 0.587iT - 23T^{2} \)
29 \( 1 + 4.47iT - 29T^{2} \)
31 \( 1 + 8.51iT - 31T^{2} \)
37 \( 1 + 7.99T + 37T^{2} \)
41 \( 1 - 7.74T + 41T^{2} \)
43 \( 1 + 5.05T + 43T^{2} \)
47 \( 1 - 9.90T + 47T^{2} \)
53 \( 1 - 4.63iT - 53T^{2} \)
59 \( 1 + 2.11T + 59T^{2} \)
61 \( 1 - 8.11iT - 61T^{2} \)
67 \( 1 + 8.80T + 67T^{2} \)
71 \( 1 - 2.57iT - 71T^{2} \)
73 \( 1 - 6.88iT - 73T^{2} \)
79 \( 1 + 7.01T + 79T^{2} \)
83 \( 1 + 5.21T + 83T^{2} \)
89 \( 1 + 8.17T + 89T^{2} \)
97 \( 1 - 13.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.967072921894204358255917048866, −9.491590538608690028692578916550, −8.507606199503372735175560944921, −7.55597173815129982129464624055, −7.04757698161757750396532547855, −5.85789265982529811359819229032, −4.47324574369123512497009103110, −3.86826703799306267920016211032, −2.54880585089016900441311474417, −1.40823094097786333693598464880, 1.49846010748719001626085197131, 2.77574613471688897688704049400, 3.43917690248265699465208595143, 4.99227423615140032097447674801, 5.74853401698293641712330883570, 6.87074634647085674544811519012, 7.85852220437531522747458076924, 8.654301186831117771808312055755, 9.163921212224481500673647126007, 10.12990021020353497764082278864

Graph of the $Z$-function along the critical line