L(s) = 1 | + (1.72 + 0.0964i)3-s + 5-s + (0.208 − 2.63i)7-s + (2.98 + 0.333i)9-s + 1.71i·11-s + 3.11i·13-s + (1.72 + 0.0964i)15-s + 3.59·17-s + 1.04i·19-s + (0.615 − 4.54i)21-s − 0.587i·23-s + 25-s + (5.12 + 0.864i)27-s − 4.47i·29-s − 8.51i·31-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0556i)3-s + 0.447·5-s + (0.0789 − 0.996i)7-s + (0.993 + 0.111i)9-s + 0.516i·11-s + 0.863i·13-s + (0.446 + 0.0249i)15-s + 0.871·17-s + 0.239i·19-s + (0.134 − 0.990i)21-s − 0.122i·23-s + 0.200·25-s + (0.986 + 0.166i)27-s − 0.830i·29-s − 1.52i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 + 0.134i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 + 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.46919 - 0.166582i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.46919 - 0.166582i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.72 - 0.0964i)T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (-0.208 + 2.63i)T \) |
good | 11 | \( 1 - 1.71iT - 11T^{2} \) |
| 13 | \( 1 - 3.11iT - 13T^{2} \) |
| 17 | \( 1 - 3.59T + 17T^{2} \) |
| 19 | \( 1 - 1.04iT - 19T^{2} \) |
| 23 | \( 1 + 0.587iT - 23T^{2} \) |
| 29 | \( 1 + 4.47iT - 29T^{2} \) |
| 31 | \( 1 + 8.51iT - 31T^{2} \) |
| 37 | \( 1 + 7.99T + 37T^{2} \) |
| 41 | \( 1 - 7.74T + 41T^{2} \) |
| 43 | \( 1 + 5.05T + 43T^{2} \) |
| 47 | \( 1 - 9.90T + 47T^{2} \) |
| 53 | \( 1 - 4.63iT - 53T^{2} \) |
| 59 | \( 1 + 2.11T + 59T^{2} \) |
| 61 | \( 1 - 8.11iT - 61T^{2} \) |
| 67 | \( 1 + 8.80T + 67T^{2} \) |
| 71 | \( 1 - 2.57iT - 71T^{2} \) |
| 73 | \( 1 - 6.88iT - 73T^{2} \) |
| 79 | \( 1 + 7.01T + 79T^{2} \) |
| 83 | \( 1 + 5.21T + 83T^{2} \) |
| 89 | \( 1 + 8.17T + 89T^{2} \) |
| 97 | \( 1 - 13.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.967072921894204358255917048866, −9.491590538608690028692578916550, −8.507606199503372735175560944921, −7.55597173815129982129464624055, −7.04757698161757750396532547855, −5.85789265982529811359819229032, −4.47324574369123512497009103110, −3.86826703799306267920016211032, −2.54880585089016900441311474417, −1.40823094097786333693598464880,
1.49846010748719001626085197131, 2.77574613471688897688704049400, 3.43917690248265699465208595143, 4.99227423615140032097447674801, 5.74853401698293641712330883570, 6.87074634647085674544811519012, 7.85852220437531522747458076924, 8.654301186831117771808312055755, 9.163921212224481500673647126007, 10.12990021020353497764082278864