L(s) = 1 | + (1.08 − 1.34i)3-s + 5-s + (2.53 + 0.769i)7-s + (−0.641 − 2.93i)9-s − 1.53i·11-s − 1.09i·13-s + (1.08 − 1.34i)15-s + 1.57·17-s + 4.32i·19-s + (3.78 − 2.57i)21-s − 6.09i·23-s + 25-s + (−4.65 − 2.31i)27-s + 0.867i·29-s + 4.03i·31-s + ⋯ |
L(s) = 1 | + (0.626 − 0.779i)3-s + 0.447·5-s + (0.956 + 0.291i)7-s + (−0.213 − 0.976i)9-s − 0.462i·11-s − 0.302i·13-s + (0.280 − 0.348i)15-s + 0.381·17-s + 0.992i·19-s + (0.826 − 0.562i)21-s − 1.27i·23-s + 0.200·25-s + (−0.895 − 0.445i)27-s + 0.161i·29-s + 0.724i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00739 - 1.06165i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00739 - 1.06165i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.08 + 1.34i)T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (-2.53 - 0.769i)T \) |
good | 11 | \( 1 + 1.53iT - 11T^{2} \) |
| 13 | \( 1 + 1.09iT - 13T^{2} \) |
| 17 | \( 1 - 1.57T + 17T^{2} \) |
| 19 | \( 1 - 4.32iT - 19T^{2} \) |
| 23 | \( 1 + 6.09iT - 23T^{2} \) |
| 29 | \( 1 - 0.867iT - 29T^{2} \) |
| 31 | \( 1 - 4.03iT - 31T^{2} \) |
| 37 | \( 1 - 11.4T + 37T^{2} \) |
| 41 | \( 1 + 2.70T + 41T^{2} \) |
| 43 | \( 1 + 1.74T + 43T^{2} \) |
| 47 | \( 1 + 10.3T + 47T^{2} \) |
| 53 | \( 1 - 4.51iT - 53T^{2} \) |
| 59 | \( 1 + 2.72T + 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 3.69T + 67T^{2} \) |
| 71 | \( 1 + 11.7iT - 71T^{2} \) |
| 73 | \( 1 - 2.71iT - 73T^{2} \) |
| 79 | \( 1 + 7.04T + 79T^{2} \) |
| 83 | \( 1 + 6.68T + 83T^{2} \) |
| 89 | \( 1 + 4.13T + 89T^{2} \) |
| 97 | \( 1 - 16.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.997643456654288635408511852436, −9.039329762794235867489523121033, −8.223269187948058497886089216219, −7.80211974871064992425834573305, −6.57213788324160539104829683134, −5.84729422953526741190352352037, −4.74691115313896367682256508964, −3.37981407208301713932501451689, −2.30286097426305385133441021157, −1.21055135727640921452037310371,
1.67014843039434238394023434837, 2.81367408519317382022907905795, 4.10111808091070977582987569530, 4.83760244290628018781589318351, 5.72190289197036231042633750710, 7.11689577630177841360972552658, 7.88466949027851319397874875222, 8.713558405456741981328949399550, 9.635408787973218262493165090806, 10.05534033258180985224816240969