Properties

Label 2-840-21.20-c1-0-24
Degree $2$
Conductor $840$
Sign $0.562 + 0.826i$
Analytic cond. $6.70743$
Root an. cond. $2.58987$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.08 − 1.34i)3-s + 5-s + (2.53 + 0.769i)7-s + (−0.641 − 2.93i)9-s − 1.53i·11-s − 1.09i·13-s + (1.08 − 1.34i)15-s + 1.57·17-s + 4.32i·19-s + (3.78 − 2.57i)21-s − 6.09i·23-s + 25-s + (−4.65 − 2.31i)27-s + 0.867i·29-s + 4.03i·31-s + ⋯
L(s)  = 1  + (0.626 − 0.779i)3-s + 0.447·5-s + (0.956 + 0.291i)7-s + (−0.213 − 0.976i)9-s − 0.462i·11-s − 0.302i·13-s + (0.280 − 0.348i)15-s + 0.381·17-s + 0.992i·19-s + (0.826 − 0.562i)21-s − 1.27i·23-s + 0.200·25-s + (−0.895 − 0.445i)27-s + 0.161i·29-s + 0.724i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.562 + 0.826i$
Analytic conductor: \(6.70743\)
Root analytic conductor: \(2.58987\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{840} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 840,\ (\ :1/2),\ 0.562 + 0.826i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.00739 - 1.06165i\)
\(L(\frac12)\) \(\approx\) \(2.00739 - 1.06165i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.08 + 1.34i)T \)
5 \( 1 - T \)
7 \( 1 + (-2.53 - 0.769i)T \)
good11 \( 1 + 1.53iT - 11T^{2} \)
13 \( 1 + 1.09iT - 13T^{2} \)
17 \( 1 - 1.57T + 17T^{2} \)
19 \( 1 - 4.32iT - 19T^{2} \)
23 \( 1 + 6.09iT - 23T^{2} \)
29 \( 1 - 0.867iT - 29T^{2} \)
31 \( 1 - 4.03iT - 31T^{2} \)
37 \( 1 - 11.4T + 37T^{2} \)
41 \( 1 + 2.70T + 41T^{2} \)
43 \( 1 + 1.74T + 43T^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 - 4.51iT - 53T^{2} \)
59 \( 1 + 2.72T + 59T^{2} \)
61 \( 1 + 10.7iT - 61T^{2} \)
67 \( 1 - 3.69T + 67T^{2} \)
71 \( 1 + 11.7iT - 71T^{2} \)
73 \( 1 - 2.71iT - 73T^{2} \)
79 \( 1 + 7.04T + 79T^{2} \)
83 \( 1 + 6.68T + 83T^{2} \)
89 \( 1 + 4.13T + 89T^{2} \)
97 \( 1 - 16.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.997643456654288635408511852436, −9.039329762794235867489523121033, −8.223269187948058497886089216219, −7.80211974871064992425834573305, −6.57213788324160539104829683134, −5.84729422953526741190352352037, −4.74691115313896367682256508964, −3.37981407208301713932501451689, −2.30286097426305385133441021157, −1.21055135727640921452037310371, 1.67014843039434238394023434837, 2.81367408519317382022907905795, 4.10111808091070977582987569530, 4.83760244290628018781589318351, 5.72190289197036231042633750710, 7.11689577630177841360972552658, 7.88466949027851319397874875222, 8.713558405456741981328949399550, 9.635408787973218262493165090806, 10.05534033258180985224816240969

Graph of the $Z$-function along the critical line