L(s) = 1 | + (1.69 − 0.348i)3-s − 5-s + (−2.63 − 0.272i)7-s + (2.75 − 1.18i)9-s − 3.13i·11-s − 4.34i·13-s + (−1.69 + 0.348i)15-s + 0.791·17-s + 0.768i·19-s + (−4.56 + 0.453i)21-s − 6.32i·23-s + 25-s + (4.26 − 2.96i)27-s − 5.96i·29-s + 5.49i·31-s + ⋯ |
L(s) = 1 | + (0.979 − 0.201i)3-s − 0.447·5-s + (−0.994 − 0.103i)7-s + (0.919 − 0.393i)9-s − 0.944i·11-s − 1.20i·13-s + (−0.438 + 0.0899i)15-s + 0.191·17-s + 0.176i·19-s + (−0.995 + 0.0990i)21-s − 1.31i·23-s + 0.200·25-s + (0.821 − 0.570i)27-s − 1.10i·29-s + 0.986i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0990 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0990 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22080 - 1.10535i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22080 - 1.10535i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.69 + 0.348i)T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + (2.63 + 0.272i)T \) |
good | 11 | \( 1 + 3.13iT - 11T^{2} \) |
| 13 | \( 1 + 4.34iT - 13T^{2} \) |
| 17 | \( 1 - 0.791T + 17T^{2} \) |
| 19 | \( 1 - 0.768iT - 19T^{2} \) |
| 23 | \( 1 + 6.32iT - 23T^{2} \) |
| 29 | \( 1 + 5.96iT - 29T^{2} \) |
| 31 | \( 1 - 5.49iT - 31T^{2} \) |
| 37 | \( 1 - 1.83T + 37T^{2} \) |
| 41 | \( 1 - 1.60T + 41T^{2} \) |
| 43 | \( 1 - 6.18T + 43T^{2} \) |
| 47 | \( 1 + 3.24T + 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 + 9.30T + 59T^{2} \) |
| 61 | \( 1 - 13.1iT - 61T^{2} \) |
| 67 | \( 1 + 2.64T + 67T^{2} \) |
| 71 | \( 1 - 0.227iT - 71T^{2} \) |
| 73 | \( 1 - 15.7iT - 73T^{2} \) |
| 79 | \( 1 + 13.6T + 79T^{2} \) |
| 83 | \( 1 + 2.74T + 83T^{2} \) |
| 89 | \( 1 - 16.6T + 89T^{2} \) |
| 97 | \( 1 + 6.11iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04263212244091890593797531937, −8.991338849744893581816243052929, −8.333094633250994532064926309031, −7.60855026808282788636928410278, −6.63993252256361041806843910530, −5.76565657243741865039199746635, −4.29305211936899193041505067916, −3.32683784684726783596257239057, −2.68160227957977986441458489736, −0.72658477238687432999552042431,
1.79961419355137801256099355185, 3.02452661063759508520748932154, 3.92730627599264169870478752053, 4.76878270519552572628334823125, 6.22523712741743606207520783856, 7.22959593117187213759123561479, 7.69226673643722195665580839412, 9.062707102677606836145568551347, 9.323144487045560099674323654679, 10.13732882930392760080815446676