L(s) = 1 | + (0.252 + 1.39i)2-s + (1.52 + 0.825i)3-s + (−1.87 + 0.701i)4-s − 5-s + (−0.764 + 2.32i)6-s + i·7-s + (−1.44 − 2.42i)8-s + (1.63 + 2.51i)9-s + (−0.252 − 1.39i)10-s + 3.18i·11-s + (−3.43 − 0.476i)12-s + 0.611i·13-s + (−1.39 + 0.252i)14-s + (−1.52 − 0.825i)15-s + (3.01 − 2.62i)16-s + 3.24i·17-s + ⋯ |
L(s) = 1 | + (0.178 + 0.983i)2-s + (0.879 + 0.476i)3-s + (−0.936 + 0.350i)4-s − 0.447·5-s + (−0.312 + 0.950i)6-s + 0.377i·7-s + (−0.512 − 0.858i)8-s + (0.545 + 0.837i)9-s + (−0.0797 − 0.440i)10-s + 0.959i·11-s + (−0.990 − 0.137i)12-s + 0.169i·13-s + (−0.371 + 0.0674i)14-s + (−0.393 − 0.213i)15-s + (0.753 − 0.657i)16-s + 0.786i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0324711 - 1.57242i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0324711 - 1.57242i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.252 - 1.39i)T \) |
| 3 | \( 1 + (-1.52 - 0.825i)T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
good | 11 | \( 1 - 3.18iT - 11T^{2} \) |
| 13 | \( 1 - 0.611iT - 13T^{2} \) |
| 17 | \( 1 - 3.24iT - 17T^{2} \) |
| 19 | \( 1 + 1.51T + 19T^{2} \) |
| 23 | \( 1 + 3.27T + 23T^{2} \) |
| 29 | \( 1 + 6.32T + 29T^{2} \) |
| 31 | \( 1 + 5.58iT - 31T^{2} \) |
| 37 | \( 1 + 1.51iT - 37T^{2} \) |
| 41 | \( 1 - 4.12iT - 41T^{2} \) |
| 43 | \( 1 + 0.874T + 43T^{2} \) |
| 47 | \( 1 - 0.289T + 47T^{2} \) |
| 53 | \( 1 - 3.74T + 53T^{2} \) |
| 59 | \( 1 + 4.18iT - 59T^{2} \) |
| 61 | \( 1 - 11.4iT - 61T^{2} \) |
| 67 | \( 1 - 0.637T + 67T^{2} \) |
| 71 | \( 1 - 13.8T + 71T^{2} \) |
| 73 | \( 1 - 14.2T + 73T^{2} \) |
| 79 | \( 1 - 12.9iT - 79T^{2} \) |
| 83 | \( 1 + 2.55iT - 83T^{2} \) |
| 89 | \( 1 + 8.07iT - 89T^{2} \) |
| 97 | \( 1 - 13.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25074648876128506338318681721, −9.550676430648308762286169190879, −8.808247989879596819644513940017, −7.996324193355279190012116764714, −7.43869079321045783331052257345, −6.38118529594997405789439837455, −5.26317723141196636359986077314, −4.28001630756652400639363861617, −3.67043572251269333682776065686, −2.17785474335175354399586202509,
0.65699842347373064594832515871, 2.07927927740205993251735972787, 3.26246123006698212308922876971, 3.84177542318314967076989662205, 5.05505850809413179871334444707, 6.29580076463873872783088359299, 7.44945309763595206457063432710, 8.270895930831576591782341513018, 8.952985867640703521920679859015, 9.768182132371565627426767118583