L(s) = 1 | + (−0.258 + 1.39i)2-s + (−1.73 + 0.0660i)3-s + (−1.86 − 0.718i)4-s − 5-s + (0.355 − 2.42i)6-s − i·7-s + (1.48 − 2.40i)8-s + (2.99 − 0.228i)9-s + (0.258 − 1.39i)10-s + 1.12i·11-s + (3.27 + 1.12i)12-s − 3.42i·13-s + (1.39 + 0.258i)14-s + (1.73 − 0.0660i)15-s + (2.96 + 2.68i)16-s + 4.43i·17-s + ⋯ |
L(s) = 1 | + (−0.182 + 0.983i)2-s + (−0.999 + 0.0381i)3-s + (−0.933 − 0.359i)4-s − 0.447·5-s + (0.145 − 0.989i)6-s − 0.377i·7-s + (0.524 − 0.851i)8-s + (0.997 − 0.0762i)9-s + (0.0817 − 0.439i)10-s + 0.338i·11-s + (0.946 + 0.323i)12-s − 0.949i·13-s + (0.371 + 0.0691i)14-s + (0.446 − 0.0170i)15-s + (0.741 + 0.670i)16-s + 1.07i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.871 - 0.491i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.871 - 0.491i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.132259 + 0.503833i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.132259 + 0.503833i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 1.39i)T \) |
| 3 | \( 1 + (1.73 - 0.0660i)T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + iT \) |
good | 11 | \( 1 - 1.12iT - 11T^{2} \) |
| 13 | \( 1 + 3.42iT - 13T^{2} \) |
| 17 | \( 1 - 4.43iT - 17T^{2} \) |
| 19 | \( 1 + 3.05T + 19T^{2} \) |
| 23 | \( 1 - 4.29T + 23T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 - 5.37iT - 31T^{2} \) |
| 37 | \( 1 - 2.22iT - 37T^{2} \) |
| 41 | \( 1 - 2.94iT - 41T^{2} \) |
| 43 | \( 1 + 12.9T + 43T^{2} \) |
| 47 | \( 1 + 9.04T + 47T^{2} \) |
| 53 | \( 1 - 2.89T + 53T^{2} \) |
| 59 | \( 1 - 5.77iT - 59T^{2} \) |
| 61 | \( 1 - 3.04iT - 61T^{2} \) |
| 67 | \( 1 + 6.06T + 67T^{2} \) |
| 71 | \( 1 - 12.5T + 71T^{2} \) |
| 73 | \( 1 - 0.929T + 73T^{2} \) |
| 79 | \( 1 - 15.8iT - 79T^{2} \) |
| 83 | \( 1 - 11.2iT - 83T^{2} \) |
| 89 | \( 1 - 11.5iT - 89T^{2} \) |
| 97 | \( 1 + 0.308T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40412373915545826631053406851, −9.895604113513481881603560170337, −8.575425083507264441881635218947, −7.948015666326345873236420388063, −6.89748595058356471192412985197, −6.42465044753260599419039714505, −5.29097178173204412637286908348, −4.63415853737010180736821052404, −3.58462347414298591070525157190, −1.16322295050446742643428654865,
0.37240334447885231586269678805, 1.89937903556129272248050903758, 3.29428693435100079660574844719, 4.48926680159028915035604873889, 5.07838491003423876169878070059, 6.33651359269282093085653038777, 7.26737615730305449916853545182, 8.363136039966954969147517630205, 9.215386341199243664091259769719, 9.997237511953508849757528911512