| L(s) = 1 | + (−0.0812 + 1.41i)2-s + (0.965 − 0.258i)3-s + (−1.98 − 0.229i)4-s + (−0.422 − 2.19i)5-s + (0.286 + 1.38i)6-s + (−1.48 − 2.19i)7-s + (0.485 − 2.78i)8-s + (0.866 − 0.499i)9-s + (3.13 − 0.418i)10-s + (−2.78 + 4.82i)11-s + (−1.97 + 0.292i)12-s + (−4.22 + 4.22i)13-s + (3.21 − 1.91i)14-s + (−0.976 − 2.01i)15-s + (3.89 + 0.911i)16-s + (−0.0957 − 0.357i)17-s + ⋯ |
| L(s) = 1 | + (−0.0574 + 0.998i)2-s + (0.557 − 0.149i)3-s + (−0.993 − 0.114i)4-s + (−0.188 − 0.981i)5-s + (0.117 + 0.565i)6-s + (−0.560 − 0.827i)7-s + (0.171 − 0.985i)8-s + (0.288 − 0.166i)9-s + (0.991 − 0.132i)10-s + (−0.839 + 1.45i)11-s + (−0.571 + 0.0845i)12-s + (−1.17 + 1.17i)13-s + (0.858 − 0.512i)14-s + (−0.252 − 0.519i)15-s + (0.973 + 0.227i)16-s + (−0.0232 − 0.0866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.709 + 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.709 + 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0537483 - 0.130458i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0537483 - 0.130458i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.0812 - 1.41i)T \) |
| 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 5 | \( 1 + (0.422 + 2.19i)T \) |
| 7 | \( 1 + (1.48 + 2.19i)T \) |
| good | 11 | \( 1 + (2.78 - 4.82i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (4.22 - 4.22i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.0957 + 0.357i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.88 + 2.24i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.12 + 1.37i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 2.15T + 29T^{2} \) |
| 31 | \( 1 + (7.57 + 4.37i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.398 - 1.48i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 6.48T + 41T^{2} \) |
| 43 | \( 1 + (4.80 + 4.80i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.335 + 1.25i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.463 - 1.73i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-2.91 - 1.68i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.74 + 5.62i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.73 + 13.9i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 10.8iT - 71T^{2} \) |
| 73 | \( 1 + (7.09 - 1.90i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-0.655 - 1.13i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.80 - 6.80i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.23 - 1.86i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.31 + 5.31i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.676993517424531237847172019608, −9.072725315333049773905859481761, −7.925516820529139760643726419725, −7.35401454392108715167015480709, −6.80374972144411716520985806963, −5.30611354222773438380619459970, −4.59154361261742283704617480181, −3.80503240677502682584919145918, −1.96283613938335362605282424182, −0.06147733437677313843153766294,
2.23133199665587206274216936843, 3.16106368794635377639892216085, 3.47260736364558524527555724626, 5.24129870642939661910901420255, 5.85915294721966292350298359302, 7.45524185299603417027323391942, 8.117649727151710968242741316754, 8.949936616483954807781364724438, 10.09675619826336921557193119586, 10.20322506467795690974346037206