L(s) = 1 | + (−0.258 − 0.965i)3-s + (−0.394 − 2.20i)5-s + (2.44 + 1.01i)7-s + (−0.866 + 0.499i)9-s + (1.46 − 2.53i)11-s + (−0.741 + 0.741i)13-s + (−2.02 + 0.950i)15-s + (5.37 − 1.43i)17-s + (−0.502 − 0.870i)19-s + (0.343 − 2.62i)21-s + (1.12 − 4.18i)23-s + (−4.68 + 1.73i)25-s + (0.707 + 0.707i)27-s − 0.582i·29-s + (−1.56 − 0.902i)31-s + ⋯ |
L(s) = 1 | + (−0.149 − 0.557i)3-s + (−0.176 − 0.984i)5-s + (0.924 + 0.381i)7-s + (−0.288 + 0.166i)9-s + (0.442 − 0.765i)11-s + (−0.205 + 0.205i)13-s + (−0.522 + 0.245i)15-s + (1.30 − 0.349i)17-s + (−0.115 − 0.199i)19-s + (0.0749 − 0.572i)21-s + (0.233 − 0.872i)23-s + (−0.937 + 0.347i)25-s + (0.136 + 0.136i)27-s − 0.108i·29-s + (−0.280 − 0.162i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.117 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.117 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00805 - 1.13451i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00805 - 1.13451i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.258 + 0.965i)T \) |
| 5 | \( 1 + (0.394 + 2.20i)T \) |
| 7 | \( 1 + (-2.44 - 1.01i)T \) |
good | 11 | \( 1 + (-1.46 + 2.53i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.741 - 0.741i)T - 13iT^{2} \) |
| 17 | \( 1 + (-5.37 + 1.43i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.502 + 0.870i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.12 + 4.18i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 0.582iT - 29T^{2} \) |
| 31 | \( 1 + (1.56 + 0.902i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.12 + 0.836i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 4.95iT - 41T^{2} \) |
| 43 | \( 1 + (7.46 + 7.46i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.09 + 4.07i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (9.64 - 2.58i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-7.19 + 12.4i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.44 + 3.14i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.05 + 7.67i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 0.0421T + 71T^{2} \) |
| 73 | \( 1 + (-0.910 - 3.39i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (1.02 - 0.594i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.48 - 6.48i)T - 83iT^{2} \) |
| 89 | \( 1 + (-6.09 - 10.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.412 - 0.412i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.877588184392618916871327318953, −8.880379420433534793924827081987, −8.316659080214850575797639813962, −7.60169311408901742854425305934, −6.46088188721745469177376423763, −5.42247013361697653328481912565, −4.83663392168126215201206906825, −3.52337319245887556705865479819, −1.98838074577825889222540854592, −0.822046441886465858772238504222,
1.63680743469434762047145027708, 3.15835489598439618645507311571, 4.04225943220576644827115139871, 5.05082901656956057882978085487, 6.00981908928369024070136721493, 7.18679323112743535738898134704, 7.69704026766645417063982012079, 8.746739667796355218257145350827, 10.00838834839303393479535231922, 10.20966834800005969295505811073